992 resultados para Stable solutions
Resumo:
Phosphinic-derivative poly(styrene-co-divinylbenzene)-based on PS-DVB copolymers with different porosity degrees have been prepared by aromatic electrophilic substitution reaction using PCl(3)/AlCl(3) followed by base-promoted hydrolysis. The phosphorylation reaction was analyzed by infra-red spectroscopy (FTIR), scanning electron microscopy (SEM), and thermogravimetry (TG/DTG). In addition, the phosphorous content of the phosphorylated copolymers was determined by spectrophotometry using the method based on sodium molybdate reactant so that the extension of that modification could be assessed. The performance of the phosphorylated resins in the extraction of Pb(2+) from aqueous solutions in a batch system was also evaluated. The Pb(2+) content was determined by atomic absorption spectrometry (AAS). These materials presented excellent extraction capacity under the contact time of 30 min and pH 6.
Resumo:
The electrochemical behaviour of a near-beta Ti-13Nb-13Zr alloy for the application as implants was investigated in various solutions. The electrolytes used were 0.9 wt% NaCl solution, Hanks` solution and a culture medium known as minimum essential medium (MEM) composed of salts, vitamins and amino acids, all at 37 degrees C. The electrochemical behaviour was investigated by the following electrochemical techniques: open circuit potential measurements as a function of time, electrochemical impedance spectroscopy (EIS) and determination of polarisation curves. The obtained results showed that the Ti alloy was passive in all electrolytes. The EIS results were analysed using an equivalent electrical circuit representing a duplex structure oxide layer, composed of an inner barrier layer, mainly responsible for the alloy corrosion resistance, and an outer and porous layer that has been associated to osteointegration ability. The properties of both layers were dependent on the electrolyte used. The results suggested that the thickest porous layer is formed in the MEM solution whereas the impedance of the barrier layer formed in this solution was the lowest among the electrolytes used. The polarisation curves showed a current increase at potentials around 1300 mV versus saturated calomel electrode (SCE), and this increase was also dependent on the electrolyte used. The highest increase in current density was also associated to the MEM solution suggesting that this is the most aggressive electrolyte to the Ti alloy among the three tested solutions.
Resumo:
In this work, a stable MPC that maximizes the domain of attraction of the closed-loop system is proposed. The proposed approach is suitable to real applications in the sense that it accounts for the case of output tracking, it is offset free if the output target is reachable and minimizes the offset if some of the constraints are active at steady state. The new approach is based on the definition of a Minkowski functional related to the input and terminal constraints of the stable infinite horizon MPC. It is also shown that the domain of attraction is defined by the system model and the constraints, and it does not depend on the controller tuning parameters. The proposed controller is illustrated with small order examples of the control literature. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this work is the study of batch liquid-liquid extraction of phenol from aqueous solutions in a bench-scale well-mixed reactor. The influence of the ratio of phase volumes, temperature, and rotational speed on phenol removal (0.72-1.1% w/w) was investigated using methyl isobutyl ketone as an extracting solvent. For this purpose, the ratio of phase volumes were set at 0.1 and 0.2, the temperature at 10, 20, and 30 degrees C, and the rotational speed at 300, 400, and 500 rpm. A physical model based on the material balance of the phases as well as the equation of mass flux between the phases allowed the estimation of the overall coefficient of mass transfer coupled with the superficial area. Moreover, it proved to fit, satisfactorily well, the experimental data of residual phenol concentration in the organic phase versus time under all the conditions investigated.
Resumo:
The water activity of aqueous solutions of EO-PO block copolymers of six different molar masses and EO/PO ratios and of maltodextrins of three different molar masses was determined at 298.15 K. The results showed that these aqueous solutions present a negative deviation from Raoult`s law. The Flory-Huggins and UNIFAC excess Gibbs energy models were employed to model the experimental data. While a good agreement was obtained with the Flory-Huggins equation, discrepancies were observed when predicting the experimental behavior with the UNIFAC model. The water activities of ternary systems formed by a synthetic polymer, maltodextrin and water were also measured and used to test the predictive capability of both models.
Resumo:
This work presents an alternative way to formulate the stable Model Predictive Control (MPC) optimization problem that allows the enlargement of the domain of attraction, while preserving the controller performance. Based on the dual MPC that uses the null local controller, it proposed the inclusion of an appropriate set of slacked terminal constraints into the control problem. As a result, the domain of attraction is unlimited for the stable modes of the system, and the largest possible for the non-stable modes. Although this controller does not achieve local optimality, simulations show that the input and output performances may be comparable to the ones obtained with the dual MPC that uses the LQR as a local controller. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Several MPC applications implement a control strategy in which some of the system outputs are controlled within specified ranges or zones, rather than at fixed set points [J.M. Maciejowski, Predictive Control with Constraints, Prentice Hall, New Jersey, 2002]. This means that these outputs will be treated as controlled variables only when the predicted future values lie outside the boundary of their corresponding zones. The zone control is usually implemented by selecting an appropriate weighting matrix for the output error in the control cost function. When an output prediction is inside its zone, the corresponding weight is zeroed, so that the controller ignores this output. When the output prediction lies outside the zone, the error weight is made equal to a specified value and the distance between the output prediction and the boundary of the zone is minimized. The main problem of this approach, as long as stability of the closed loop is concerned, is that each time an output is switched from the status of non-controlled to the status of controlled, or vice versa, a different linear controller is activated. Thus, throughout the continuous operation of the process, the control system keeps switching from one controller to another. Even if a stabilizing control law is developed for each of the control configurations, switching among stable controllers not necessarily produces a stable closed loop system. Here, a stable M PC is developed for the zone control of open-loop stable systems. Focusing on the practical application of the proposed controller, it is assumed that in the control structure of the process system there is an upper optimization layer that defines optimal targets to the system inputs. The performance of the proposed strategy is illustrated by simulation of a subsystem of an industrial FCC system. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Experimental results for the activity of water in aqueous solutions of 10 single, synthetic polyelectrolytes (polysodium acrylate, polysodium methacrylate, polyammonium acrylate, polysodium ethylene sulfonate, and polysodium styrene sulfonate) and sodium chloride at 298.2 K are presented. The experimental work was performed by applying the isopiestic method with sodium chloride as a reference substance. As expected, the activity of water decreases when the concentration of a polyelectrolyte and/or sodium chloride increases. At constant concentration of a polyelectrolyte and sodium chloride, the activity of water depends on the monomer unit and the molecular mass of the polyelectrolyte. The new data are to be used in future work to develop and test models for the Gibbs excess energy of aqueous solutions of polyelectrolytes.
Resumo:
Pitzer`s equation for the excess Gibbs energy of aqueous solutions of low-molecular electrolytes is extended to aqueous solutions of polyelectrolytes. The model retains the original form of Pitzer`s model (combining a long-range term, based on the Debye-Huckel equation, with a short-range term similar to the virial equation where the second osmotic virial coefficient depends on the ionic strength). The extension consists of two parts: at first, it is assumed that a constant fraction of the monomer units of the polyelectrolyte is dissociated, i.e., that fraction does not depend on the concentration of the polyelectrolyte, and at second, a modified expression for the ionic strength (wherein each charged monomer group is taken into account individually) is introduced. This modification is to account for the presence of charged polyelectrolyte chains, which cannot be regarded as punctual charges. The resulting equation was used to correlate osmotic coefficient data of aqueous solutions of a single polyelectrolyte as well as of binary mixtures of a single polyelectrolyte and a salt with low-molecular weight. It was additionally applied to correlate liquid-liquid equilibrium data of some aqueous two-phase systems that might form when a polyelectrolyte and another hydrophilic but neutral polymer are simultaneously dissolved in water. A good agreement between the experimental data and the correlation result is observed for all investigated systems. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Experimental results for the activity of water in aqueous solutions of 10 single polyelectrolytes (two polysodium acrylates, two polysodium methacrylates, three polyammonium acrylates, two polysodium ethylene sulfonates, and one polysodium styrene sulfonate) at (298.2 and 323.2) K are reported. The isopiestic method was employed in these experiments with aqueous solutions of sodium chloride as references. The polyelectrolytes were characterized by three averaged molecular masses determined by gel permeation chromatography. Furthermore, the density and the refractive index increments of the aqueous polyelectrolyte solutions are reported. Although a similar pattern for the activity of water was observed for all systems (i.e., the osmotic coefficient increases with rising polyelectrolyte concentration), the experimental results show that this property depends on the monomer type as well as on the size of the polymer chain. The temperature (varied from (298.2 to 323.2) K) has only a small influence on the activity of water.
Resumo:
A rigorous derivation of non-linear equations governing the dynamics of an axially loaded beam is given with a clear focus to develop robust low-dimensional models. Two important loading scenarios were considered, where a structure is subjected to a uniformly distributed axial and a thrust force. These loads are to mimic the main forces acting on an offshore riser, for which an analytical methodology has been developed and applied. In particular, non-linear normal modes (NNMs) and non-linear multi-modes (NMMs) have been constructed by using the method of multiple scales. This is to effectively analyse the transversal vibration responses by monitoring the modal responses and mode interactions. The developed analytical models have been crosschecked against the results from FEM simulation. The FEM model having 26 elements and 77 degrees-of-freedom gave similar results as the low-dimensional (one degree-of-freedom) non-linear oscillator, which was developed by constructing a so-called invariant manifold. The comparisons of the dynamical responses were made in terms of time histories, phase portraits and mode shapes. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A method based on a specific power-law relationship between the hydraulic head and the Boltzmann variable was recently presented. We generalized this relationship to a range of powers and extended the solution to include the saturated zone. As a result, the new solution satisfies the Bruce and Klute equation exactly.
Resumo:
Ocotea catharinensis is a rare tree species indigenous to the Atlantic rainforest of South America. In spite of its value as a hardwood species, it is in danger of extinction. The species erratically produces seeds showing irregular flowering and slow growth. Therefore, plants are not easily replaced. Tissue culture-based techniques are commonly used for obtaining living material for tree propagation and in vitro preservation. Therefore, a high-frequency somatic embryogenic system was developed for the species. In the present work, the genetic fidelity of cell aggregates and somatic embryos at various stages of in vitro development of O. catharinensis was investigated using RAPD and AFLP markers. Both analyses confirmed the absence of genetic variation in all developmental stages of O. catharinensis embryogenic cultures, verifying that the in vitro system is genetically stable. The cultures were also analyzed for their methylation profiles at 5`-CCGG-3` sites by identifying methylation-sensitive amplification polymorphisms. Some of these markers differentiated cell aggregates from embryo bodies. The sequencing of ten MSAP markers revealed that four sequences showed significant similarity to genes encoding plant proteins. Particularly, the predicted amino acid sequence of the fragment designated as OcEaggHMttc155 was similar to the enzyme 1-aminocyclopropane-1-carboxylate oxidase (ACO), which is involved in the biosynthesis of ethylene, and its expression was reported to occur from the beginning to the intermediate stages of plant embryo development. Here, we suggest that this enzyme is possibly involved in the control of the earliest stages of somatic embryogenesis of O. catharinensis, and an approach to study ACO expression during somatic embryogenesis is proposed.
Resumo:
Observations of cells of axenic peach palm (Bactris gasipaes) microplants by light microscopy revealed movements of small particles within the cells. The phenomenon was characterized initially as Brownian movement, but electron microscopy revealed the presence of an intracellular bacterial community in these plants. Microscopy observations revealed the particular shapes of bacterial cells colonizing inner tissues of analyzed plants. Applying a molecular characterization by polymerase chain reaction and denaturing gradient gel electrophoresis, it was revealed the existence of bacterial rRNA within the plants. Sequencing of the rRNA identified three different phylogenetic groups; two bands had a high degree of similarity to sequences from Moraxella sp. and Brevibacillus sp., and a third sequence was similar to a non-cultivated cyanobacterium. The presence of those endosymbionts, called bacteriosomes, in axenic peach palm microplants raises the question of whether these stable endosymbionts were acquired in the process of evolution and how could they benefit the process of plants micropropagation.
Resumo:
Boron (B) deficiency is widespread in Brazilian citrus orchards and has been considered an important soil constraint to citrus yield. The aim of this work was to study B uptake and its mobility in young citrus trees, under different B statuses, in two rootstocks. The experiment was carried out in a greenhouse, with `Valencia` sweet orange trees budded on Rangpur lime or Swingle citrumelo. The plants were grown in pots containing nutrient solutions under either adequate or deficient B supply. Plants with different B levels were transplanted into solution with adequate level of B, enriched in 10 B in different stages of development ( vegetative growth and fruiting). About 20 to 35% of B content in the new parts of orange tree came from plant reserves. Boron mobility within the plant was influenced by its nutritional status; that is, the longer the period was that the plants were grown under deficient supply, the smaller was the mobility. Boron concentration in the sweet orange trees on Swingle was higher than that on Rangpur, suggesting higher demand of swingle Citrumelo for B.