856 resultados para Sports competitions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Référence bibliographique : Rol, 58929

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Référence bibliographique : Rol, 58930

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Référence bibliographique : Rol, 58933

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Référence bibliographique : Rol, 58926

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exercising in the heat induces thermoregulatory and other physiological strain that can lead to impairments in endurance exercise capacity. The purpose of this consensus statement is to provide up-to-date recommendations to optimize performance during sporting activities undertaken in hot ambient conditions. The most important intervention one can adopt to reduce physiological strain and optimize performance is to heat acclimatize. Heat acclimatization should comprise repeated exercise-heat exposures over 1-2 weeks. In addition, athletes should initiate competition and training in a euhydrated state and minimize dehydration during exercise. Following the development of commercial cooling systems (e.g., cooling vest), athletes can implement cooling strategies to facilitate heat loss or increase heat storage capacity before training or competing in the heat. Moreover, event organizers should plan for large shaded areas, along with cooling and rehydration facilities, and schedule events in accordance with minimizing the health risks of athletes, especially in mass participation events and during the first hot days of the year. Following the recent examples of the 2008 Olympics and the 2014 FIFA World Cup, sport governing bodies should consider allowing additional (or longer) recovery periods between and during events for hydration and body cooling opportunities when competitions are held in the heat.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Given the climatic changes around the world and the growing outdoor sports participation, existing guidelines and recommendations for exercising in naturally challenging environments such as heat, cold or altitude, exhibit potential shortcomings. Continuous efforts from sport sciences and exercise physiology communities aim at minimizing the risks of environmental-related illnesses during outdoor sports practices. Despite this, the use of simple weather indices does not permit an accurate estimation of the likelihood of facing thermal illnesses. This provides a critical foundation to modify available human comfort modeling and to integrate bio-meteorological data in order to improve the current guidelines. Although it requires further refinement, there is no doubt that standardizing the recently developed Universal Thermal Climate Index approach and its application in the field of sport sciences and exercise physiology may help to improve the appropriateness of the current guidelines for outdoor, recreational and competitive sports participation. This review first summarizes the main environmental-related risk factors that are susceptible to increase with recent climate changes when exercising outside and offers recommendations to combat them appropriately. Secondly, we briefly address the recent development of thermal stress models to assess the thermal comfort and physiological responses when practicing outdoor activities in challenging environments.