856 resultados para Sporting initiation
Resumo:
This study describes a study of 14 software companies, on how they initiate and pre-plan software projects. The aim was to obtain an indication of the range of planning activities carried out. The study, using a convenience sample, was carried out using structured interviews, with questions about early software project planning activities. The study offers evidence that an iterative and incremental development process presents extra difficulties in the case of fixed-contract projects. The authors also found evidence that feasibility studies were common, but generally informal in nature. Documentation of the planning process, especially for project scoping, was variable. For incremental and iterative development projects, an upfront decision on software architecture was shown to be preferred over allowing the architecture to just ‘emerge’. There is also evidence that risk management is recognised but often performed incompletely. Finally appropriate future research arising from the study is described.
Resumo:
Mitochondrial dysfunction has been proposed to play a role in the pathogenesis of Parkinson s disease (PD) Supportive of this hypothesis several genetic variants that regulate mitochondrial function and homeostasis have been described to alter PD susceptibility A recent report demonstrated association of a single nucleotide polymorphism in the mitochondrial translation initiation factor 3 (MTIF3) gene with PD risk The protein encoded by this nuclear gene is essential for initiation complex formation on the mitochondrial 55S ribosome and regulates translation of proteins within the mitochondria Changes in the function or expression of the MTIF3 protein may result in altered mitochondrial function ATP production or formation of reactive oxygen species thereby affecting susceptibility to PD We examined the association of rs7669 with sporadic PD in three Caucasian case control series (n = 2434) A significant association was observed in the largest series (Norwegian n = 1650) when comparing CC vs CT/TT genotypes with the Irish and US series having a similar but non-significant trend The combined series also revealed an association with risk of PD (P = 0 01) supporting the possible involvement of this gene in PD etiology Published by Elsevier Ireland Ltd
Resumo:
Background: The utilisation of healthcare resources by prevalent haemodialysis patients has been robustly evaluated with regard to the provision of outpatient haemodialysis; however, the impact of hospitalisation among such patients is poorly defined. Minimal information is available in the UK to estimate the health and economic burden associated with the inpatient management of prevalent haemodialysis patients. The aim of this study was to assess the pattern of hospitalisation among a cohort of haemodialysis patients, before and following their initiation of haemodialysis. In addition the study sought to assess the impact of their admissions on bed occupancy in a large tertiary referral hospital in a single region in the UK.
Methods: All admission episodes were reviewed and those receiving dialysis with the Belfast City Hospital Programme were identified over a 5 year period from January 2001 to December 2005. This tertiary referral centre provides dialysis services for a population of approximately 700?000 and additional specialist renal services for the remainder of Northern Ireland. The frequency and duration of hospitalisation, and contribution to bed day occupancy of haemodialysis patients, was determined and compared to other common conditions which are known to be associated with high bed occupancy. In addition, the pattern and timing of admissions in dialysis patients in relation to their dialysis initiation date was assessed.
Results: Over the 5 year study period, 798 haemodialysis patients were admitted a total of 2882 times. These accounted for 2.5% of all admissions episodes; the median number of admissions for these patients was 3 (2–5) which compared with 1 (1–2) for non-dialysis patients. The majority of first hospitalisations (54%) were within 100 days before or after commencement of maintenance dialysis therapy. In all clinical specialties the median length of stay for haemodialysis patients was significantly longer than for patients not on haemodialysis (p=0.004). In multivariate analysis with adjustment for age, gender, and other clinically relevant diagnostic codes, maintenance haemodialysis patients stayed on average 3.75 times longer than other patient groups (ratio of geometric means 3.75, IQR 3.46–4.06).
Conclusions: Maintenance haemodialysis therapy is an important risk factor for prolonged hospitalisation regardless of the primary reason for admission. Such patients require admission more frequently than the general hospital population, particularly within 100 days before and after initiation of their first dialysis treatment.
Resumo:
WbaP catalyzes the transfer of galactose-1-phosphate onto undecaprenyl phosphate (Und-P). The enzyme belongs to a large family of bacterial membrane proteins required for initiation of the synthesis of O antigen lipopolysaccharide and polysaccharide capsules. Previous work in our laboratory demonstrated that the last transmembrane helix and C-terminal tail region of WbaP (WbaP(CT)) are sufficient for enzymatic activity. Here, we demonstrate the cytoplasmic location of the WbaP C-terminal tail and show that WbaPCT domain N-terminally fused to thioredoxin (TrxA-WbaP(CT)) exhibits improved protein folding and enhanced transferase activity. Alanine replacement of highly conserved charged or polar amino acids identified seven critical residues for enzyme activity in vivo and in vitro. Four of these residues are located in regions predicted to be a-helical. These regions and their secondary structure predictions are conserved in distinct WbaP family members, suggesting they may contribute to form a conserved catalytic center.
Resumo:
WbaP is a membrane enzyme that initiates O antigen synthesis in Salmonella enterica by catalysing the transfer of galactose 1-phosphate (Gal-1-P) onto undecaprenyl phosphate (Und-P). WbaP possesses at least three predicted structural domains: an N-terminal region containing four transmembrane helices, a large central periplasmic loop, and a C-terminal domain containing the last transmembrane helix and a large cytoplasmic tail. In this work, we investigated the contribution of each region to WbaP function by constructing a series of mutant WbaP proteins and using them to complement O antigen synthesis in DeltawbaP mutants of S. enterica serovars Typhi and Typhimurium. Truncated forms of WbaP lacking the periplasmic loop exhibited altered chain-length distributions in O antigen polymerization, suggesting that this central domain is involved in modulating the chain-length distribution of the O polysaccharide. The N-terminal and periplasmic domains were dispensable for complementation of O antigen synthesis in vivo, suggesting that the C-terminal domain carries the sugar-phosphate transferase activity. However, despite the fact that they complemented the synthesis of O antigen in the DeltawbaP mutant in vivo, membrane extracts containing WbaP derivatives without the N-terminal domain failed to transfer radioactive Gal from UDP-Gal into a lipid-rich fraction. These results suggest that the N-terminal region of WbaP, which contains four transmembrane domains, is essential for the insertion or stability of the protein in the bacterial membrane. We propose that the domain structure of WbaP enables this protein not only to function in the transfer of Gal-1-P to Und-P but also to establish critical interactions with additional proteins required for the correct assembly of O antigen in S. enterica.
Resumo:
The glycan chain of the S-layer glycoprotein of Geobacillus stearothermophilus NRS 2004/3a is composed of repeating units [-->2)-alpha-l-Rhap-(1-->3)-beta-l-Rhap-(1-->2)-alpha-l-Rhap-(1-->], with a 2-O-methyl modification of the terminal trisaccharide at the nonreducing end of the glycan chain, a core saccharide composed of two or three alpha-l-rhamnose residues, and a beta-d-galactose residue as a linker to the S-layer protein. In this study, we report the biochemical characterization of WsaP of the S-layer glycosylation gene cluster as a UDP-Gal:phosphoryl-polyprenol Gal-1-phosphate transferase that primes the S-layer glycoprotein glycan biosynthesis of Geobacillus stearothermophilus NRS 2004/3a. Our results demonstrate that the enzyme transfers in vitro a galactose-1-phosphate from UDP-galactose to endogenous phosphoryl-polyprenol and that the C-terminal half of WsaP carries the galactosyltransferase function, as already observed for the UDP-Gal:phosphoryl-polyprenol Gal-1-phosphate transferase WbaP from Salmonella enterica. To confirm the function of the enzyme, we show that WsaP is capable of reconstituting polysaccharide biosynthesis in WbaP-deficient strains of Escherichia coli and Salmonella enterica serovar Typhimurium.
Resumo:
Peatlands are a key component of the global carbon cycle. Chronologies of peatland initiation are typically based on compiled basal peat radiocarbon (14C) dates and frequency histograms of binned calibrated age ranges. However, such compilations are problematic because poor quality 14C dates are commonly included and because frequency histograms of binned age ranges introduce chronological artefacts that bias the record of peatland initiation. Using a published compilation of 274 basal 14C dates from Alaska as a case study, we show that nearly half the 14C dates are inappropriate for reconstructing peatland initiation, and that the temporal structure of peatland initiation is sensitive to sampling biases and treatment of calibrated14C dates. We present revised chronologies of peatland initiation for Alaska and the circumpolar Arctic based on summed probability distributions of calibrated 14C dates. These revised chronologies reveal that northern peatland initiation lagged abrupt increases in atmospheric CH4 concentration at the start of the Bølling–Allerød interstadial (Termination 1A) and the end of the Younger Dryas chronozone (Termination 1B), suggesting that northern peatlands were not the primary drivers of the rapid increases in atmospheric CH4. Our results demonstrate that subtle methodological changes in the synthesis of basal 14C ages lead to substantially different interpretations of temporal trends in peatland initiation, with direct implications for the role of peatlands in the global carbon cycle.
Resumo:
This article critically assesses the criminal law on consensual harm through an examination of the legality of fighting sports. The article begins by considering fighting sports such as bare-fisted prize fighting (dominant in the nineteenth century). It then, in historical chronology, examines the legality of professional boxing with gloves (dominant in the twentieth century). Doctrinally, the article reviews why and how, in a position adopted by the leading common law jurisdictions, fighting sports benefit from an application of the “well-established” category-based exceptions to the usual bodily harm threshold of consent in the criminal law. Centrally, fighting sports and doctrinal law on offenses against the person are juxtaposed against the theoretical boundaries of consent in the criminal law to examine whether and where the limit of the “right to be hurt” might lie. In sum, this article uses fighting sports as a case study to assess whether the criminal law generally can or should accommodate the notion of a fair fight, sporting or otherwise, predicated on the consent of the participants to the point that the individuals involved might be said, pithily, to have extended an open invite to harm.
Resumo:
Type II DNA topoisomerases catalyse DNA double-strand cleavage, passage and re-ligation to effect topological changes. There is considerable interest in elucidating topoisomerase II roles, particularly as these proteins are targets for anti-cancer drugs. Here we uncover a role for topoisomerase IIa in RNA polymerase I-directed ribosomal RNA gene transcription, which drives cell growth and proliferation and is upregulated in cancer cells. Our data suggest that topoisomerase IIa is a component of the initiation-competent RNA polymerase Iß complex and interacts directly with RNA polymerase I-associated transcription factor RRN3, which targets the polymerase to promoter-bound SL1 in pre-initiation complex formation. In cells, activation of rDNA transcription is reduced by inhibition or depletion of topoisomerase II, and this is accompanied by reduced transient double-strand DNA cleavage in the rDNA-promoter region and reduced pre-initiation complex formation. We propose that topoisomerase IIa functions in RNA polymerase I transcription to produce topological changes at the rDNA promoter that facilitate efficient de novo pre-initiation complex formation.