965 resultados para Spinal cord lesion


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental and clinical studies suggest that primate species exhibit greater recovery after lateralized compared to symmetrical spinal cord injuries. Although this observation has major implications for designing clinical trials and translational therapies, advantages in recovery of nonhuman primates over other species have not been shown statistically to date, nor have the associated repair mechanisms been identified. We monitored recovery in more than 400 quadriplegic patients and found that functional gains increased with the laterality of spinal cord damage. Electrophysiological analyses suggested that corticospinal tract reorganization contributes to the greater recovery after lateralized compared with symmetrical injuries. To investigate underlying mechanisms, we modeled lateralized injuries in rats and monkeys using a lateral hemisection, and compared anatomical and functional outcomes with patients who suffered similar lesions. Standardized assessments revealed that monkeys and humans showed greater recovery of locomotion and hand function than did rats. Recovery correlated with the formation of corticospinal detour circuits below the injury, which were extensive in monkeys but nearly absent in rats. Our results uncover pronounced interspecies differences in the nature and extent of spinal cord repair mechanisms, likely resulting from fundamental differences in the anatomical and functional characteristics of the motor systems in primates versus rodents. Although rodents remain essential for advancing regenerative therapies, the unique response of the primate corticospinal tract after injury reemphasizes the importance of primate models for designing clinically relevant treatments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

STUDY DESIGN: Case-control study. OBJECTIVES: To assess serum myostatin levels, bone mineral density (BMD), appendicular skeletal muscle mass (ASMM) and serum sclerostin levels in chronic spinal cord injured (SCI) patients and healthy controls. SETTING: SCI centre in Italy. METHODS: Blood samples, whole-body bioelectrical impedance analysis and BMD measurement with the ultrasound technique at the calcaneus level were taken from patients suffering from chronic SCI (both motor complete and incomplete) and healthy control subjects. RESULTS: A total of 28 SCI patients and 15 healthy controls were enrolled. Serum myostatin levels were statistically higher (P<0.01) in SCI patients compared with healthy controls. Similar results were found comparing both the motor complete and the motor incomplete SCI subgroups to healthy controls. Serum sclerostin was significantly higher in patients with SCI compared with healthy controls (P<0.01). BMD, stiffness and mean T-score values in SCI patients were significantly lower than those in healthy controls. Serum myostatin concentrations in the motor complete SCI subgroups correlated only with serum sclerostin levels (r(2)=0.42; P=0.001) and ASMM (r(2)=0.70; P=0.002) but not in healthy controls. DISCUSSION: Serum myostatin and serum sclerostin are significantly higher in chronic SCI patients compared with healthy controls. They are potential biomarkers of muscle and bone modifications after SCI. This is the first study reporting an increase in serum myostatin in patients suffering from chronic SCI and a correlation with ASMM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spinal cord infarction is much rarer than cerebral stroke, but its early recognition is important as it may signify serious aortic conditions. The most frequent type is anterior spinal artery syndrome, presenting with bilateral weakness (usually paraparesis), impairment of spinothalamic sensation and preservation of deep sensation. Depending on its level, it may present with respiratory dysfunction. More rarely, posterior infarcts sparing spinothalamic sensation but involving lemniscal sensation may be encountered. Unilateral, central or transverse infarction may also be seen probably on account of different mechanisms. Other rarer forms of spinal ischemia also include spinal TIAs, venous infarction, fibrocartilaginous embolism and decompression sickness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The brain integrates multiple sensory inputs, including somatosensory and visual inputs, to produce a representation of the body. Spinal cord injury (SCI) interrupts the communication between brain and body and the effects of this deafferentation on body representation are poorly understood. We investigated whether the relative weight of somatosensory and visual frames of reference for body representation is altered in individuals with incomplete or complete SCI (affecting lower limbs' somatosensation), with respect to controls. To study the influence of afferent somatosensory information on body representation, participants verbally judged the laterality of rotated images of feet, hands, and whole-bodies (mental rotation task) in two different postures (participants' body parts were hidden from view). We found that (i) complete SCI disrupts the influence of postural changes on the representation of the deafferented body parts (feet, but not hands) and (ii) regardless of posture, whole-body representation progressively deteriorates proportionally to SCI completeness. These results demonstrate that the cortical representation of the body is dynamic, responsive, and adaptable to contingent conditions, in that the role of somatosensation is altered and partially compensated with a change in the relative weight of somatosensory versus visual bodily representations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Spinal cord stimulation (SCS) may be a treatment option in limb ischemia occurring as a result of Thromboangiitis obliterans (TAO) or secondary Raynaud's-Syndrome (SRS). The impact of SCS on disease progression and micro-perfusion was prospectively evaluated during a follow-up (FU) of 4 years. Report: Under SCS, a significant increase in trans-cutaneous oxygen tension (tcpO2) was observed in TAO and a significant increase in systolic perfusion pressure at plethysmography was observed in SRS. Complete limb preservation was achieved in all patients who had reduced tobacco consumption. Discussion: SCS is an efficient therapeutic tool in TAO and SRS. Patient selection criteria are crucial for success.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The immune system is involved in the development of neuropathic pain. In particular, the infiltration of T-lymphocytes into the spinal cord following peripheral nerve injury has been described as a contributor to sensory hypersensitivity. We used the spared nerve injury (SNI) model of neuropathic pain in Sprague Dawley adult male rats to assess proliferation, and/or protein/gene expression levels for microglia (Iba1), T-lymphocytes (CD2) and cytotoxic T-lymphocytes (CD8). In the dorsal horn ipsilateral to SNI, Iba1 and BrdU stainings revealed microglial reactivity and proliferation, respectively, with different durations. Iba1 expression peaked at D4 and D7 at the mRNA and protein level, respectively, and was long-lasting. Proliferation occurred almost exclusively in Iba1 positive cells and peaked at D2. Gene expression observation by RT-qPCR array suggested that T-lymphocytes attracting chemokines were upregulated after SNI in rat spinal cord but only a few CD2/CD8 positive cells were found. A pronounced infiltration of CD2/CD8 positive T-cells was seen in the spinal cord injury (SCI) model used as a positive control for lymphocyte infiltration. Under these experimental conditions, we show early and long-lasting microglia reactivity in the spinal cord after SNI, but no lymphocyte infiltration was found.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An outbreak of compressive myelopathy in cattle associated with the improper use of an oil vaccine is described. Neurological signs were observed in 25 out of 3,000 cattle after 60 days of being vaccinated against foot and mouth disease. The clinical picture was characterized by progressive paralysis of the hind limbs, difficulty in standing up, and sternal recumbency during the course of 2-5 months. A filling defect between the L1 and L3 vertebrae was seen through myelography performed in one of the affected animals. A yellow-gray, granular and irregular mass was observed in four necropsied animals involving the spinal nerve roots and epidural space of the lumbar (L1-L4) spinal cord; the mass was associated with a whitish oily fluid. This fluid was also found in association with necrosis of the longissimus dorsi muscle. Microscopic changes in the epidural space, nerve roots, and spinal musculature were similar and consisted of granulomas or pyogranulomas around circular unstained spaces (vacuoles). These spaces were located between areas of severe diffuse hyaline necrosis of muscle fibers and resembled the drops of oil present in the vaccine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to describe the topography of the spinal cord of the red-footed tortoise to establish a morphological basis for applied research in anesthesiology and morphology. Six tortoises from the state of Maranhão (Brazil) that had died of natural causes were used. The common carotid artery was used to perfuse the arterial system with saline solution (heated to 37ºC) and to fix the material with a 20% formaldehyde solution. The specimens were then placed in a modified decalcifying solution for 72 hours to allow dorsal opening of the carapace with a chisel and an orthopedic hammer. Dissection of the dorsal musculature and sectioning of the vertebral arches were performed to access the spinal cord. The results revealed the spinal cord of G. carbonaria to be an elongated, whitish mass that reached the articulation between the penultimate and last caudal vertebrae. The cervical intumescence (Intumescentia cervicalis) was located between vertebral segments C5 and T1, whereas the lumbosacral intumescence (Intumescentia lumbalis) was located between T6 and Ca1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports a case of nonpapillary and infiltrative transitional cell carcinoma (TCC) of the urinary bladder with metastasis of lumbar vertebrae and spinal cord compression in an adult female ocelot (Leopardus pardalis), from the Mato Grosso state, Brazil. The ocelot had pelvic limb paralysis and skin ulcers in the posterior region of the body and was submitted to euthanasia procedure. At necropsy was observed a multilobulated and irregular shaped, yellowish to white nodule in the urinary bladder. The nodule had a soft consistency and arised from the mucosa of the urinary bladder extending throughout the muscular layers and the serosa. Nodules of similar appearance infiltrating the vertebral column the at L6 and L7 vertebrae with corresponding spinal canal invasion were also observed. The histological evaluation showed epithelial neoplastic proliferation in the urinary bladder with characteristics of nonpapillary and infiltrative TCC, with positive immunohistochemical staining for pancytokeratin, and strong immunostaining for cytokeratin of low molecular weight, and weak or absent labeling for high molecular weight cytokeratin. This is the first report of TCC of urinary bladder in ocelot in Brazil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiple episodes of blood-brain barrier disruption were induced by sequential intraspinal injections of ethidium bromide. In addition to the barrier disruption, there was toxic demyelination and exposure of myelin components to the immune system. Twenty-seven 3-month-old Wistar rats received 2, 3 or 4 injections of 1 µl of either 0.1% ethidium bromide in normal saline (19 rats) or 0.9% saline (8 rats) at different levels of the spinal cord. The time intervals between the injections ranged from 28 to 42 days. Ten days after the last injection, all rats were perfused with 2.5% glutaraldehyde. The spinal sections were evaluated macroscopically and by light and transmission electron microscopy. All the lesions demonstrated a mononuclear phagocytic infiltrate apparently removing myelin. Lymphocytes were not conspicuous and were found in only 34% of the lesions. No perivascular cuffings were detected. In older lesions (38 days and older) they were found only within Virchow-Robin spaces. This result suggests that multiple blood-brain barrier disruptions with demyelination and exposure of myelin components to the immune system were not sufficient to induce an immune-mediated reaction in the central nervous system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We studied the effect of complete spinal cord transection (SCT) on gastric emptying (GE) and on gastrointestinal (GI) and intestinal transits of liquid in awake rats using the phenol red method. Male Wistar rats (N = 65) weighing 180-200 g were fasted for 24 h and complete SCT was performed between C7 and T1 vertebrae after a careful midline dorsal incision. GE and GI and intestinal transits were measured 15 min, 6 h or 24 h after recovery from anesthesia. A test meal (0.5 mg/ml phenol red in 5% glucose solution) was administered intragastrically (1.5 ml) and the animals were sacrificed by an iv thiopental overdose 10 min later to evaluate GE and GI transit. For intestinal transit measurements, 1 ml of the test meal was administered into the proximal duodenum through a cannula inserted into a gastric fistula. GE was inhibited (P<0.05) by 34.3, 23.4 and 22.7%, respectively, at 15 min, 6 h and 24 h after SCT. GI transit was inhibited (P<0.05) by 42.5, 19.8 and 18.4%, respectively, at 15 min, 6 h and 24 h after SCT. Intestinal transit was also inhibited (P<0.05) by 48.8, 47.2 and 40.1%, respectively, at 15 min, 6 h and 24 h after SCT. Mean arterial pressure was significantly decreased (P<0.05) by 48.5, 46.8 and 41.5%, respectively, at 15 min, 6 h and 24 h after SCT. In summary, our report describes a decreased GE and GI and intestinal transits in awake rats within the first 24 h after high SCT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complex nature of spinal cord injury appears to demand a multifactorial repair strategy. One of the components that will likely be included is an implant that will fill the area of lost nervous tissue and provide a growth substrate for injured axons. Here we will discuss the role of Schwann cells (SCs) in cell-based, surgical repair strategies of the injured adult spinal cord. We will review key studies that showed that intraspinal SC grafts limit injury-induced tissue loss and promote axonal regeneration and myelination, and that this response can be improved by adding neurotrophic factors or anti-inflammatory agents. These results will be compared with several other approaches to the repair of the spinal cord. A general concern with repair strategies is the limited functional recovery, which is in large part due to the failure of axons to grow across the scar tissue at the distal graft-spinal cord interface. Consequently, new synaptic connections with spinal neurons involved in motor function are not formed. We will highlight repair approaches that did result in growth across the scar and discuss the necessity for more studies involving larger, clinically relevant types of injuries, addressing this specific issue. Finally, this review will reflect on the prospect of SCs for repair strategies in the clinic.