981 resultados para Spectral Studies
Resumo:
To characterize potential mechanism-based inactivation (MBI) of major human drug-metabolizing cytochromes P450 (CYP) by monoamine oxidase (MAO) inhibitors, including the antitubercular drug isoniazid. Human liver microsomal CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A activities were investigated following co- and preincubation with MAO inhibitors. Inactivation kinetic constants (K-I and k(inact)) were determined where a significant preincubation effect was observed. Spectral studies were conducted to elucidate the mechanisms of inactivation. Hydrazine MAO inhibitors generally exhibited greater inhibition of CYP following preincubation, whereas this was less frequent for the propargylamines, and tranylcypromine and moclobemide. Phenelzine and isoniazid inactivated all CYP but were most potent toward CYP3A and CYP2C19. Respective inactivation kinetic constants (K-I and k(inact)) for isoniazid were 48.6 mu M and 0.042 min(-1) and 79.3 mu M and 0.039 min(-1). Clorgyline was a selective inactivator of CYP1A2 (6.8 mu M and 0.15 min(-1)). Inactivation of CYP was irreversible, consistent with metabolite-intermediate complexation for isoniazid and clorgyline, and haeme destruction for phenelzine. With the exception of phenelzine-mediated CYP3A inactivation, glutathione and superoxide dismutase failed to protect CYP from inactivation by isoniazid and phenelzine. Glutathione partially slowed (17%) the inactivation of CYP1A2 by clorgyline. Alternate substrates or inhibitors generally protected against CYP inactivation. These data are consistent with mechanism-based inactivation of human drug-metabolizing CYP enzymes and suggest that impaired metabolic clearance may contribute to clinical drug-drug interactions with some MAO inhibitors.
Resumo:
Transition metal [Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II)] complexes of a new Schiff base, 3-acetylcoumarin-o-aminobenzoylhydrazone were synthesized and characterized by elemental analyses, magnetic moments, conductivity measurements, spectral [Electronic, IR, H-1 and C-13 NMR, EPR] and thermal studies. The ligand crystallizes in the monoclinic system, space group P2(1)/n with a = 9.201(5), b = 16.596( 9), c = 11.517(6) angstrom, beta= 101.388(9)degrees, V = 1724.2 (17) angstrom(3) and Z = 4. Conductivity measurements indicated Mn(II) and Co(II) complexes to be 1 : 1 electrolytes whereas Ni(II), Cu(II), Zn(II) and Cd(II) complexes are non-electrolytes. Electronic spectra reveal that all the complexes possess four-coordinate geometry around the metal.
Resumo:
Two coordination polymers [Ni(ipt)(dap)(2)](n) (1) and [Cu(ipt)(dap)H2O](n) center dot nH(2)O (2) with an overall one-dimensional arrangement and having isophthalate (ipt) as bridging moieties and chelating 1,3-diaminopropane (dap) as structure modulating units have been prepared and characterized by crystallographic, spectroscopic and thermo-analytical studies. Both have an overall one-dimensional zig-zag nature but with a distorted octahedral NiN4O2 chromophore for 1 and a distorted square pyramidal CuN2O3 chromophore for 2. Even though the ipt units are acting as bridging units through mono-dentatively coordinating carboxylate functions in both polymers, compound 1 has the carboxylate oxygen linkages at the trans positions, while in 2 the oxygen linkages occur at the cis positions leading to a different type of zig-zag arrangement. Relevant spectral and bonding parameters also could be evaluated for the compounds using UV-Vis and EPR spectra. Thermal stability and possible structural modifications on thermal treatment of the compounds were also investigated and the relevant thermodynamic and kinetic parameters evaluated from the thermal data. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Six metal complexes of Schiff bases involving Vitamin B6 and the decarboxylated amino acid histamine have been synthesised and characterized. Crystal structures have been determined for [CuL1(H2O)Br]-NO31(L1= pyridoxylidenehistamine) and [Cu2L22(NO3)2]·6H2O 2(L2= 5′-phosphopyridoxylidenehistaminate). The crystal structure of complex 1[space group P[1 with combining macron], a= 8.161(2), b= 10.368(2), c= 11.110(2)Å, α= 105.18(1), β= 102.12(1), γ= 72.10(1)° and Z= 2; R= 0.072, R′= 0.083] consists of square-pyramidally co-ordinated copper with the tridentate Schiff base in the zwitterionic form, whereas in 2[space group P[1 with combining macron], a= 8.727(1), b= 10.308(1), c= 12.845(2)Å, α= 110.00(1), β= 78.94(1), γ= 114.35(1)° and Z= 1; R= 0.035, R′= 0.034] the copper has the same co-ordination geometry but the tetradentate Schiff-base ligand exists as a monoanion. The conformational parameters deduced from such structures are important for understanding the stereochemical aspects of Vitamin B6-catalysed model reactions involving histidine.
Resumo:
The surfactant-assisted seed-mediated growth method was used for the formation of gold nanorods (GNRs) directly on gold (Au) and indium tin oxide (ITO) surfaces. Citrate-stabilized similar to 2.6 nm spherical gold nanoparticles (AuNPs) were first self-assembled on ITO or Au surfaces modified with (3-mercaptopropyl)-trimethoxysilane (MPTS) sol-gel film and then immersed in a cationic surfactant growth solution to form GNRs. The growth of GNRs on the MPTS sol gel film modified ITO surface was monitored by UV-visible spectroscopy. The ITO surface with the attached spherical AuNPs shows a surface plasmon resonance band at 550 nm. The intensity of this absorption band increases while increasing the immersion time of the AuNP-modified ITO surface into the growth solution, and after 5 h, an additional shoulder band around 680 nm was observed. The intensity of this shoulder band increases, and it was shifted to longer wavelength as the immersion time of the AuNP-modified ITO surface into the growth solution increases. After 20 h, a predominant wave at 720 nm was observed along with a band at 550 nm. Further immersion of the modified ITO surface into the growth solution did not change the absorption characteristics. The bands observed at 550 and 720 nm were characteristics of GNRs, corresponding to transverse and longitudinal waves, respectively. The AFM images showed the presence of GNRs on the surface of the MPTS sol gel modified ITO surface with a typical length of similar to 100-120 nm and a width of similar to 20-22 nm in addition to a few spherical AuNPs, indicating that seeded spherical AuNPs were not completely involved in the GNRs' formation. Finally, the electrocatalytic activity of the surface-grown GNRs on the MPTS sol gel film modified Au electrode toward the oxidation of ascorbic acid (AA) was studied. Unlike a polycrystalline Au electrode, the surface-grown GNR-modified electrode shows two well-defined voltammetric peaks for AA at 0.01 and 0.35 V in alkaline, neutral, and acidic pHs. The cause for the observed two oxidation peaks for AA was due to the presence of both nanorods and spherical nanoparticles on the electrode surface. The presence of spherical AuNPs on the MPTS sol gel film oxidized AA at more positive potential, whereas the GNRs oxidized AA at less positive potential. The observed 340 mV less positive potential shift in the oxidation of AA suggested that GNRs are better electrocatalysts for the oxidation of AA than the spherical AuNPs.
Resumo:
Four novel mononuclear Pd(II) complexes have been synthesized with the biologically active Schiff base ligands (L-1-L-4) derived from 3-amino-2-methyl-4(3H)-quinazolinone. The structure of the complexes has been proposed by elemental analysis, molar conductance, IR, H-1 NMR, mass, UV-Vis spectrometric and thermal studies. The investigation of interaction of the complexes with calf thymus DNA (CT-DNA) has been performed with absorption and fluorescence spectroscopic studies. The nuclease activity was done using pUC19 supercoiled DNA by gel-electrophoresis. All the ligands and their Pd(II) complexes have also been screened for their antibacterial activity by discolor diffusion technique. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
The electronic structures and spectral properties of three Re(I) complexes [Re(CO)(3)XL] (X = Br, Cl; L = 1-(4-5 '-phenyl-1.3,4-oxadiazolylbenzyl)-2-pyridinylbenzoimidazole (1), 1-(4-carbazolylbutyl)-2-pyridinylbenzoimidazole (2), and 2-(1-ethyl benzimidazol-2-yl)pyridi ne (3)) were investigated theoretically. The ground and the lowest lying triplet excited states were full optimized at the B3LYP/LANL2DZ and CIS/LANL2DZ levels, respectively. TDDFT/PCM calculations have been employed to predict the absorption and emission spectra starting from the ground and excited state geometries, respectively.
Resumo:
The primary aim of these investigations was to probe the spectroscopic, electrochemical, biological and single crystal X-ray diffraction studies of some selected transition metal complexes of 4N-monosubstituted thiosemicarbazones. Transition metal complexes with thiosemicarbazones exhibit a wide range of stereochemistries and possess potential biological activity. Metal complexes of thiosemicarbazones are proved to have improved pharmacological and therapeutic effects. The studies are conducted to bring about a fair understanding of the structure activity relationship and to develop certain effective and economical metal-based antimicrobial agents. Study showed that the thiosemicarbazones have antibacterial, antiviral and antiproliferative properties and hence used against tuberculosis, leprosy, psoriasis, rheumatism, trypanosomiasis and coccidiosis. Certain thiosemicarbazones showed a selective inhibition of HSV and HIV infections. The insolubility of most thiosemicarbazones in water causes difficulty in the oral administration in clinical practice. Transition metal complexes are found to have more activity than uncombined thiosemicarbazones. They exhibit a variety of denticity and can be varied by proper substitution. The stereochemistry assumed by the thiosemicarbazones during the coordination with transition metal ions depends on the factors such as preparative conditions and availability of additional bonding site in the ligand moiety and charge of the ligand. The resulting complexes exhibited a wide range of stereochemistries and have biomimic activity and potential application as sensors.
Resumo:
This study concentrates the chemical properties of hydrazones due to its chelating capability and their pharmacological applications. Studies cover the preparation of different acid hydrazones and their structural studies and studies on their antimicrobial activity, synthesis and spectral characterization of different complexes of copper oxovanadium, manganese, nickel etc. Effect of incorporation of heterocyclic bases to the coordination sphere, change in the biological activity of acid hydrazones upon coordination, development of X-ray quality single crystals and its X-ray diffraction studies, studies on the redox behavior of the coordinated metal ions and correlation between the stereochemistry and biological activities.
Resumo:
The primary aim of these investigations was to probe the spectroscopic, electrochemical, biological and single crystal X-ray diffraction studies of some selected transition metal complexes of 4N-monosubstituted thiosemicarbazones. Transition metal complexes with thiosemicarbazones exhibit a wide range of stereochemistries and possess potential biological activity. Metal complexes of thiosemicarbazones are proved to have improved pharmacological and therapeutic effects. The studies are conducted to bring about a fair understanding of the structure activity relationship and to develop certain effective and economical metal-based antimicrobial agents. Study showed that the thiosemicarbazones have antibacterial, antiviral and antiproliferative properties and hence used against tuberculosis, leprosy, psoriasis, rheumatism, trypanosomiasis and coccidiosis. Certain thiosemicarbazones showed a selective inhibition of HSV and HIV infections. The insolubility of most thiosemicarbazones in water causes difficulty in the oral administration in clinical practice. Transition metal complexes are found to have more activity than uncombined thiosemicarbazones. They exhibit a variety of denticity and can be varied by proper substitution. The stereochemistry assumed by the thiosemicarbazones during the coordination with transition metal ions depends on the factors such as preparative conditions and availability of additional bonding site in the ligand moiety and charge of the ligand. The resulting complexes exhibited a wide range of stereochemistries and have biomimic activity and potential application as sensors
Resumo:
Coordination chemistry of pentadentate 2,6-diacetylpyridine bis(thiosemicarbazone) Schiff base ligands has been intensively studied due to the versatility of the molecular chain in order to obtain very different geometries as well as their broad therapeutic activity. Metal complexes of thiosemicarbazone with aldehydes and ketones have been widely reported. But there have been fewer reports on potential pentadentate bis(thiosemicarbazones) formed from 2,6-diacetylpyridine. Keeping these in view, we have synthesized four bis(thiosemicarbazone) systems with 2,6-diacetylpyridine. In the present work, the chelating behavior of bis(thiosemicarbazones) are studied, with the aim of investigating the influence of coordination exerts on their conformation and or configuration, in connection with the nature of the metal and of the counter ion. The selection of the 2,6-diacetylpyridine as the ketonic part was based on its capability to form polynuclear complexes with different coordination number. The doubled armed bis(thiosemicarbazones) can coordinate to a metal centre as dianionic ligand by losing its amide protons or it can coordinate as monoanionic ligand by losing its amide proton from one of the thiosemicarbazone moiety or it can also be coordinate as neutral ligand. Hence it is interesting to explore the coordinating capabilities of these ligands whether in neutral form or anionic form and to study the structural variations occurring in the ligands during complexation such as change in conformation.
Resumo:
The thesis is an introduction to our attempts to evaluate the coordination behaviour of a few compounds of our interest. Semicarbazones and their metal complexes have been an active area of research during the past years because of the beneficial biological activities of these substances. Tridentate NNO semicarbazone systems formed from heterocyclic and aromatic carbonyl compounds and their transition metal complexes are well-authenticated compounds in this field and their synthesis and characterization are well desirable. Hence, we decided to develop a research program aimed at the synthesis and characterization of novel semicarbazones derived from 2-benzoylpyridine and 2-acetylpyridine and their transition metal complexes. In addition to various physicochemical methods of analysis, single crystal X—Ray diffraction studies were also used for the characterization of the complexes.