903 resultados para Spectral Element Method
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
We consider a model eigenvalue problem (EVP) in 1D, with periodic or semi–periodic boundary conditions (BCs). The discretization of this type of EVP by consistent mass finite element methods (FEMs) leads to the generalized matrix EVP Kc = λ M c, where K and M are real, symmetric matrices, with a certain (skew–)circulant structure. In this paper we fix our attention to the use of a quadratic FE–mesh. Explicit expressions for the eigenvalues of the resulting algebraic EVP are established. This leads to an explicit form for the approximation error in terms of the mesh parameter, which confirms the theoretical error estimates, obtained in [2].
Resumo:
Peer reviewed
Resumo:
In this study, we developed and improved the numerical mode matching (NMM) method which has previously been shown to be a fast and robust semi-analytical solver to investigate the propagation of electromagnetic (EM) waves in an isotropic layered medium. The applicable models, such as cylindrical waveguide, optical fiber, and borehole with earth geological formation, are generally modeled as an axisymmetric structure which is an orthogonal-plano-cylindrically layered (OPCL) medium consisting of materials stratified planarly and layered concentrically in the orthogonal directions.
In this report, several important improvements have been made to extend applications of this efficient solver to the anisotropic OCPL medium. The formulas for anisotropic media with three different diagonal elements in the cylindrical coordinate system are deduced to expand its application to more general materials. The perfectly matched layer (PML) is incorporated along the radial direction as an absorbing boundary condition (ABC) to make the NMM method more accurate and efficient for wave diffusion problems in unbounded media and applicable to scattering problems with lossless media. We manipulate the weak form of Maxwell's equations and impose the correct boundary conditions at the cylindrical axis to solve the singularity problem which is ignored by all previous researchers. The spectral element method (SEM) is introduced to more efficiently compute the eigenmodes of higher accuracy with less unknowns, achieving a faster mode matching procedure between different horizontal layers. We also prove the relationship of the field between opposite mode indices for different types of excitations, which can reduce the computational time by half. The formulas for computing EM fields excited by an electric or magnetic dipole located at any position with an arbitrary orientation are deduced. And the excitation are generalized to line and surface current sources which can extend the application of NMM to the simulations of controlled source electromagnetic techniques. Numerical simulations have demonstrated the efficiency and accuracy of this method.
Finally, the improved numerical mode matching (NMM) method is introduced to efficiently compute the electromagnetic response of the induction tool from orthogonal transverse hydraulic fractures in open or cased boreholes in hydrocarbon exploration. The hydraulic fracture is modeled as a slim circular disk which is symmetric with respect to the borehole axis and filled with electrically conductive or magnetic proppant. The NMM solver is first validated by comparing the normalized secondary field with experimental measurements and a commercial software. Then we analyze quantitatively the induction response sensitivity of the fracture with different parameters, such as length, conductivity and permeability of the filled proppant, to evaluate the effectiveness of the induction logging tool for fracture detection and mapping. Casings with different thicknesses, conductivities and permeabilities are modeled together with the fractures in boreholes to investigate their effects for fracture detection. It reveals that the normalized secondary field will not be weakened at low frequencies, ensuring the induction tool is still applicable for fracture detection, though the attenuation of electromagnetic field through the casing is significant. A hybrid approach combining the NMM method and BCGS-FFT solver based integral equation has been proposed to efficiently simulate the open or cased borehole with tilted fractures which is a non-axisymmetric model.
Resumo:
The work presented in this thesis is concerned with the dynamical behavior of a CBandola's acoustical box at low resonances -- Two models consisting of two and three coupled oscillators are proposed in order to analyse the response at the first two and three resonances, respectively -- These models describe the first resonances in a bandola as a combination of the lowest modes of vibration of enclosed air, top and back plates -- Physically, the coupling between these elements is caused by the fluid-structure interaction that gives rise to coupled modes of vibration for the assembled resonance box -- In this sense, the coupling in the models is expressed in terms of the ratio of effective areas and masses of the elements which is an useful parameter to control the coupling -- Numerical models are developed for the analysis of modal coupling which is performed using the Finite Element Method -- First, it is analysed the modal behavior of separate elements: enclosed air, top plate and back plate -- This step is important to identify participating modes in the coupling -- Then, a numerical model of the resonance box is used to compute the coupled modes -- The computation of normal modes of vibration was executed in the frequency range of 0-800Hz -- Although the introduced models of coupled oscillators only predict maximum the first three resonances, they also allow to study qualitatively the coupling between the rest of the computed modes in the range -- Considering that dynamic response of a structure can be described in terms of the modal parameters, this work represents, in a good approach, the basic behavior of a CBandola, although experimental measurements are suggested as further work to verify the obtained results and get more information about some characteristics of the coupled modes, for instance, the phase of vibration of the air mode and the radiation e ciency
Resumo:
Intraneural Ganglion Cyst is disorder observed in the nerve injury, it is still unknown and very difficult to predict its propagation in the human body so many times it is referred as an unsolved history. The treatments for this disorder are to remove the cystic substance from the nerve by a surgery. However these treatments may result in neuropathic pain and recurrence of the cyst. The articular theory proposed by Spinner et al., (Spinner et al. 2003) considers the neurological deficit in Common Peroneal Nerve (CPN) branch of the sciatic nerve and adds that in addition to the treatment, ligation of articular branch results into foolproof eradication of the deficit. Mechanical modeling of the affected nerve cross section will reinforce the articular theory (Spinner et al. 2003). As the cyst propagates, it compresses the neighboring fascicles and the nerve cross section appears like a signet ring. Hence, in order to mechanically model the affected nerve cross section; computational methods capable of modeling excessively large deformations are required. Traditional FEM produces distorted elements while modeling such deformations, resulting into inaccuracies and premature termination of the analysis. The methods described in research report have the capability to simulate large deformation. The results obtained from this research shows significant deformation as compared to the deformation observed in the conventional finite element models. The report elaborates the neurological deficit followed by detail explanation of the Smoothed Particle Hydrodynamic approach. Finally, the results show the large deformation in stages and also the successful implementation of the SPH method for the large deformation of the biological organ like the Intra-neural ganglion cyst.
Resumo:
In the presented thesis work, the meshfree method with distance fields was coupled with the lattice Boltzmann method to obtain solutions of fluid-structure interaction problems. The thesis work involved development and implementation of numerical algorithms, data structure, and software. Numerical and computational properties of the coupling algorithm combining the meshfree method with distance fields and the lattice Boltzmann method were investigated. Convergence and accuracy of the methodology was validated by analytical solutions. The research was focused on fluid-structure interaction solutions in complex, mesh-resistant domains as both the lattice Boltzmann method and the meshfree method with distance fields are particularly adept in these situations. Furthermore, the fluid solution provided by the lattice Boltzmann method is massively scalable, allowing extensive use of cutting edge parallel computing resources to accelerate this phase of the solution process. The meshfree method with distance fields allows for exact satisfaction of boundary conditions making it possible to exactly capture the effects of the fluid field on the solid structure.
Resumo:
We propose a novel finite element formulation that significantly reduces the number of degrees of freedom necessary to obtain reasonably accurate approximations of the low-frequency component of the deformation in boundary-value problems. In contrast to the standard Ritz–Galerkin approach, the shape functions are defined on a Lie algebra—the logarithmic space—of the deformation function. We construct a deformation function based on an interpolation of transformations at the nodes of the finite element. In the case of the geometrically exact planar Bernoulli beam element presented in this work, these transformation functions at the nodes are given as rotations. However, due to an intrinsic coupling between rotational and translational components of the deformation function, the formulation provides for a good approximation of the deflection of the beam, as well as of the resultant forces and moments. As both the translational and the rotational components of the deformation function are defined on the logarithmic space, we propose to refer to the novel approach as the “Logarithmic finite element method”, or “LogFE” method.
Resumo:
El tema central de investigación en esta Tesis es el estudio del comportamientodinámico de una estructura mediante modelos que describen la distribución deenergía entre los componentes de la misma y la aplicación de estos modelos parala detección de daños incipientes.Los ensayos dinámicos son un modo de extraer información sobre las propiedadesde una estructura. Si tenemos un modelo de la estructura se podría ajustar éstepara que, con determinado grado de precisión, tenga la misma respuesta que elsistema real ensayado. Después de que se produjese un daño en la estructura,la respuesta al mismo ensayo variará en cierta medida; actualizando el modelo alas nuevas condiciones podemos detectar cambios en la configuración del modeloestructural que nos condujeran a la conclusión de que en la estructura se haproducido un daño.De este modo, la detección de un daño incipiente es posible si somos capacesde distinguir una pequeña variación en los parámetros que definen el modelo. Unrégimen muy apropiado para realizar este tipo de detección es a altas frecuencias,ya que la respuesta es muy dependiente de los pequeños detalles geométricos,dado que el tamaño característico en la estructura asociado a la respuesta esdirectamente proporcional a la velocidad de propagación de las ondas acústicas enel sólido, que para una estructura dada es inalterable, e inversamente proporcionala la frecuencia de la excitación. Al mismo tiempo, esta característica de la respuestaa altas frecuencias hace que un modelo de Elementos Finitos no sea aplicable enla práctica, debido al alto coste computacional.Un modelo ampliamente utilizado en el cálculo de la respuesta de estructurasa altas frecuencias en ingeniería es el SEA (Statistical Energy Analysis). El SEAaplica el balance energético a cada componente estructural, relacionando la energíade vibración de estos con la potencia disipada por cada uno de ellos y la potenciatransmitida entre ellos, cuya suma debe ser igual a la potencia inyectada a cadacomponente estructural. Esta relación es lineal y viene caracterizada por los factoresde pérdidas. Las magnitudes que intervienen en la respuesta se consideranpromediadas en la geometría, la frecuencia y el tiempo.Actualizar el modelo SEA a datos de ensayo es, por lo tanto, calcular losfactores de pérdidas que reproduzcan la respuesta obtenida en éste. Esta actualización,si se hace de manera directa, supone la resolución de un problema inversoque tiene la característica de estar mal condicionado. En la Tesis se propone actualizarel modelo SEA, no en término de los factores de pérdidas, sino en términos deparámetros estructurales que tienen sentido físico cuando se trata de la respuestaa altas frecuencias, como son los factores de disipación de cada componente, susdensidades modales y las rigideces características de los elementos de acoplamiento.Los factores de pérdidas se calculan como función de estos parámetros. Estaformulación es desarrollada de manera original en esta Tesis y principalmente sefunda en la hipótesis de alta densidad modal, es decir, que en la respuesta participanun gran número de modos de cada componente estructural.La teoría general del método SEA, establece que el modelo es válido bajounas hipótesis sobre la naturaleza de las excitaciones externas muy restrictivas,como que éstas deben ser de tipo ruido blanco local. Este tipo de carga es difícil dereproducir en condiciones de ensayo. En la Tesis mostramos con casos prácticos queesta restricción se puede relajar y, en particular, los resultados son suficientementebuenos cuando la estructura se somete a una carga armónica en escalón.Bajo estas aproximaciones se desarrolla un algoritmo de optimización por pasosque permite actualizar un modelo SEA a un ensayo transitorio cuando la carga esde tipo armónica en escalón. Este algoritmo actualiza el modelo no solamente parauna banda de frecuencia en particular sino para diversas bandas de frecuencia demanera simultánea, con el objetivo de plantear un problema mejor condicionado.Por último, se define un índice de daño que mide el cambio en la matriz depérdidas cuando se produce un daño estructural en una localización concreta deun componente. Se simula numéricamente la respuesta de una estructura formadapor vigas donde producimos un daño en la sección de una de ellas; como se tratade un cálculo a altas frecuencias, la simulación se hace mediante el Método delos Elementos Espectrales para lo que ha sido necesario desarrollar dentro de laTesis un elemento espectral de tipo viga dañada en una sección determinada. Losresultados obtenidos permiten localizar el componente estructural en que se haproducido el daño y la sección en que éste se encuentra con determinado grado deconfianza.AbstractThe main subject under research in this Thesis is the study of the dynamic behaviourof a structure using models that describe the energy distribution betweenthe components of the structure and the applicability of these models to incipientdamage detection.Dynamic tests are a way to extract information about the properties of astructure. If we have a model of the structure, it can be updated in order toreproduce the same response as in experimental tests, within a certain degree ofaccuracy. After damage occurs, the response will change to some extent; modelupdating to the new test conditions can help to detect changes in the structuralmodel leading to the conclusión that damage has occurred.In this way incipient damage detection is possible if we are able to detect srnallvariations in the model parameters. It turns out that the high frequency regimeis highly relevant for incipient damage detection, because the response is verysensitive to small structural geometric details. The characteristic length associatedwith the response is proportional to the propagation speed of acoustic waves insidethe solid, but inversely proportional to the excitation frequency. At the same time,this fact makes the application of a Finite Element Method impractical due to thehigh computational cost.A widely used model in engineering when dealing with the high frequencyresponse is SEA (Statistical Energy Analysis). SEA applies the energy balance toeach structural component, relating their vibrational energy with the dissipatedpower and the transmitted power between the different components; their summust be equal to the input power to each of them. This relationship is linear andcharacterized by loss factors. The magnitudes considered in the response shouldbe averaged in geometry, frequency and time.SEA model updating to test data is equivalent to calculating the loss factorsthat provide a better fit to the experimental response. This is formulated as an illconditionedinverse problem. In this Thesis a new updating algorithm is proposedfor the study of the high frequency response regime in terms of parameters withphysical meaning such as the internal dissipation factors, modal densities andcharacteristic coupling stiffness. The loss factors are then calculated from theseparameters. The approach is developed entirely in this Thesis and is mainlybased on a high modal density asumption, that is to say, a large number of modescontributes to the response.General SEA theory establishes the validity of the model under the asumptionof very restrictive external excitations. These should behave as a local white noise.This kind of excitation is difficult to reproduce in an experimental environment.In this Thesis we show that in practical cases this assumption can be relaxed, inparticular, results are good enough when the structure is excited with a harmonicstep function.Under these assumptions an optimization algorithm is developed for SEAmodel updating to a transient test when external loads are harmonic step functions.This algorithm considers the response not only in a single frequency band,but also for several of them simultaneously.A damage index is defined that measures the change in the loss factor matrixwhen a damage has occurred at a certain location in the structure. The structuresconsidered in this study are built with damaged beam elements; as we are dealingwith the high frequency response, the numerical simulation is implemented witha Spectral Element Method. It has therefore been necessary to develop a spectralbeam damaged element as well. The reported results show that damage detectionis possible with this algorithm, moreover, damage location is also possible withina certain degree of accuracy.
Resumo:
Este trabajo presenta un método discreto para el cálculo de estabilidad hidrodinámica y análisis de sensibilidad a perturbaciones externas para ecuaciones diferenciales y en particular para las ecuaciones de Navier-Stokes compressible. Se utiliza una aproximación con variable compleja para obtener una precisión analítica en la evaluación de la matriz Jacobiana. Además, mapas de sensibilidad para la sensibilidad a las modificaciones del flujo de base y a una fuerza constante permiten identificar las regiones del campo fluido donde una modificacin (ej. fuerza puntual) tiene un efecto estabilizador del flujo. Se presentan cuatro casos de prueba: (1) un caso analítico para comprobar la derivación discreta, (2) una cavidad cerrada a bajo Reynolds para mostrar la mayor precisión en el cálculo de los valores propios con la aproximación de paso complejo, (3) flujo 2D en un cilindro circular para validar la metodología, y (4) flujo en un cavidad abierta, presentado para validar el método en casos de inestabilidades convectivamente inestables. Los tres últimos casos mencionados (2-4) se resolvieron con las ecuaciones de Navier-Stokes compresibles, utilizando un método Discontinuous Galerkin Spectral Element Method. Se obtuvo una buena concordancia para el caso de validación (3), cuando se comparó el nuevo método con resultados de la literatura. Además, este trabajo muestra que para el cálculo de los modos propios directos y adjuntos, así como para los mapas de sensibilidad, el uso de variables complejas es de suprema importancia para obtener una predicción precisa. El método descrito es aplicado al análisis para la estabilización de la estela generada por un disco actuador, que representa un modelo sencillo para hélices, rotores de helicópteros o turbinas eólicas. Se explora la primera bifurcación del flujo para un disco actuador, y se sugiere que está asociada a una inestabilidad de tipo Kelvin-Helmholtz, cuya estabilidad se controla con en el número de Reynolds y en la resistencia del disco actuador (o fuerza resistente). En primer lugar, se verifica que la disminución de la resistencia del disco tiene un efecto estabilizador parecido a una disminución del Reynolds. En segundo lugar, el análisis hidrodinmico discreto identifica dos regiones para la colocación de una fuerza puntual que controle las inestabilidades, una cerca del disco y otra en una zona aguas abajo. En tercer lugar, se muestra que la inclusión de un forzamiento localizado cerca del actuador produce una estabilización más eficiente que al forzar aguas abajo. El análisis de los campos de flujo controlados confirma que modificando el gradiente de velocidad cerca del actuador es más eficiente para estabilizar la estela. Estos resultados podrían proporcionar nuevas directrices para la estabilización de la estela de turbinas de viento o de marea cuando estén instaladas en un parque eólico y minimizar las interacciones no estacionarias entre turbinas. ABSTRACT A discrete framework for computing the global stability and sensitivity analysis to external perturbations for any set of partial differential equations is presented. In particular, a complex-step approximation is used to achieve near analytical accuracy for the evaluation of the Jacobian matrix. Sensitivity maps for the sensitivity to base flow modifications and to a steady force are computed to identify regions of the flow field where an input could have a stabilising effect. Four test cases are presented: (1) an analytical test case to prove the theory of the discrete framework, (2) a lid-driven cavity at low Reynolds case to show the improved accuracy in the calculation of the eigenvalues when using the complex-step approximation, (3) the 2D flow past a circular cylinder at just below the critical Reynolds number is used to validate the methodology, and finally, (4) the flow past an open cavity is presented to give an example of the discrete method applied to a convectively unstable case. The latter three (2–4) of the aforementioned cases were solved with the 2D compressible Navier–Stokes equations using a Discontinuous Galerkin Spectral Element Method. Good agreement was obtained for the validation test case, (3), with appropriate results in the literature. Furthermore, it is shown that for the calculation of the direct and adjoint eigenmodes and their sensitivity maps to external perturbations, the use of complex variables is paramount for obtaining an accurate prediction. An analysis for stabilising the wake past an actuator disc, which represents a simple model for propellers, helicopter rotors or wind turbines is also presented. We explore the first flow bifurcation for an actuator disc and it suggests that it is associated to a Kelvin- Helmholtz type instability whose stability relies on the Reynolds number and the flow resistance applied through the disc (or actuator forcing). First, we report that decreasing the disc resistance has a similar stabilising effect to an decrease in the Reynolds number. Second, a discrete sensitivity analysis identifies two regions for suitable placement of flow control forcing, one close to the disc and one far downstream where the instability originates. Third, we show that adding a localised forcing close to the actuator provides more stabilisation that forcing far downstream. The analysis of the controlled flow fields, confirms that modifying the velocity gradient close to the actuator is more efficient to stabilise the wake than controlling the sheared flow far downstream. An interesting application of these results is to provide guidelines for stabilising the wake of wind or tidal turbines when placed in an energy farm to minimise unsteady interactions.
Resumo:
An electrostatic model for osmotic flow through circular cylindrical pores is developed to describe the reflection coefficient for the membrane transport in the presence of surface charges on the pore wall and the solute. For a spherical solute placed at an arbitrary radial position in the pore, the electrical potential was computed by a spectral element method applied to the Poisson-Boltzmann equation together with the condition of electrical neutrality. The interaction energy between the surface charges was used to estimate the osmotic reflection coefficient. The proposed model predicts that even for a small Debye length compared to the pore radius, the repulsive electrostatic interaction between the surface charges could significantly increase the osmotic flow through the pore.
Resumo:
In this paper we show how to accurately perform a quasi-a priori estimation of the truncation error of steady-state solutions computed by a discontinuous Galerkin spectral element method. We estimate the spatial truncation error using the ?-estimation procedure. While most works in the literature rely on fully time-converged solutions on grids with different spacing to perform the estimation, we use non time-converged solutions on one grid with different polynomial orders. The quasi-a priori approach estimates the error while the residual of the time-iterative method is not negligible. Furthermore, the method permits one to decouple the surface and the volume contributions of the truncation error, and provides information about the anisotropy of the solution as well as its rate of convergence in polynomial order. First, we focus on the analysis of one dimensional scalar conservation laws to examine the accuracy of the estimate. Then, we extend the analysis to two dimensional problems. We demonstrate that this quasi-a priori approach yields a spectrally accurate estimate of the truncation error.
Resumo:
In this work, a new boundary element formulation for the analysis of plate-beam interaction is presented. This formulation uses a three nodal value boundary elements and each beam element is replaced by its actions on the plate, i.e., a distributed load and end of element forces. From the solution of the differential equation of a beam with linearly distributed load the plate-beam interaction tractions can be written as a function of the nodal values of the beam. With this transformation a final system of equation in the nodal values of displacements of plate boundary and beam nodes is obtained and from it, all unknowns of the plate-beam system are obtained. Many examples are analyzed and the results show an excellent agreement with those from the analytical solution and other numerical methods. (C) 2009 Elsevier Ltd. All rights reserved.