963 resultados para Specific heat
Resumo:
Une première partie de ce mémoire portera sur l’analyse des états fondamentaux ma- gnétiques de deux composés isolants et magnétiquement frustrés SrDy2O4 et SrHo2O4. Une étude de la chaleur spécifique à basse température sous l’effet de champs magné- tiques de ces échantillons a été menée afin de détecter la présence de transitions de phases. L’utilisation d’un composé isotructurel non magnétique, le SrLu2O4, a permis l’isolement de la composante magnétique à la chaleur spécifique. Les comportements observés sont non conformes avec les transitions magnétiques conventionnelles. De plus, le calcul de l’entropie magnétique ne montre qu’un recouvrement partiel de l’entropie associée à un système d’ions magnétiques. En second lieu, une analyse des oscillations quantiques de Haas-van Alphen a été effectuée dans le LuCoIn5, composé apparenté au supraconducteur à fermions lourds CeCoIn5. Les résultats obtenus montrent une topologie de la surface de Fermi très différente comparativement aux CeCoIn5 et LaCoIn5, ayant un comportement beaucoup plus tridimensionnel sans les cylindres caractéristiques présents chez les autres membres de cette famille. Finalement, le montage d’un système de détection PIXE a permis l’analyse nucléaire d’échantillons afin de déterminer la concentration de chacun des éléments les constituant. L’analyse a été effectuée sur une série d’échantillons YbxCe1−xCoIn5 dont le changement de concentration a des effets importants sur les propriétés du système.
Resumo:
L'aimant organique NIT-2Py a été caractérisé expérimentalement et ses propriétés ont été simulées numériquement à partir de la théorie de la fonctionnelle de la densité. Le magnétisme dans ce matériau provient de la présence d'un électron non apparié sur chaque molécule qui a ainsi un moment magnétique non nul. Ceci a été confirmé par des simulations sur une molécule isolée. Les molécules de NIT-2Py cristallisent dans le groupe d'espace P21/c avec huit molécules par maille élémentaire pour former la structure cristalline Alpha étudiée dans ce document. Le moment effectif de la susceptibilité et l'entropie magnétique totale montre que ce matériau est un système de spins 1/2 avec un spin par molécule. Les mesures de chaleur spécifique ont mis en évidence la présence de deux phases magnétiques ordonnées à basse température qui sont séparées par un plateau en aimantation. Une première phase est observée à des champs magnétiques inférieurs à 2.2 T et a une température de transition de 1.32 K en champ nul. Les mesures de susceptibilité magnétique et d'aimantation ont permis d'établir que cette phase ordonnée est antiferromagnétique. Ceci est confirmé par les simulations numériques. La deuxième phase est induite par le champ magnétique avec une température de transition de 0.53 K à 6 T. L'information disponible sur cette phase est limitée et l'étude du système à l'extérieur des phases ordonnées en donne une meilleure compréhension. Un modèle de spins S=1/2 isolés et de dimères S=0 isolés reproduit bien les mesures d'aimantation et de chaleur spécifique au-dessus de 3 K. L'application d'un champ magnétique réduit l'écart d'énergie entre le singulet et le triplet du dimère jusqu'au croisement qui se produit à 6 T. La phase induite émerge précisément à ce croisement et on spécule l'existence d'un condensat de Bose-Einstein des états triplets.
Resumo:
Il sera question dans ce mémoire de maîtrise de l’étude d’une nouvelle classification des états solides de la matière appelée isolant topologique. Plus précisément, nous étudierons cette classification chez le composé demi-Heusler GdBiPt. Nous avons principalement cherché à savoir si ce composé ternaire est un isolant topologique antiferromagnétique. Une analyse de la susceptibilité magnétique ainsi que de la chaleur spécifique du maté- riau montre la présence d’une transition antiferromagnétique à 8.85(3) K. Une mesure d’anisotropie de cette susceptibilité montre que les plans de spins sont ordonnés sui- vant la direction (1,1,1) et finalement des mesures de résistivité électronique ainsi que de l’effet Hall nous indiquent que nous avons un matériau semimétallique lorsque nous sommes en présence d’antiferromagnétisme. Présentement, les expériences menées ne nous permettent pas d’associer cet état métallique aux états surfaciques issus de l’état d’isolant topologique.
Resumo:
The thermal transport properties, thermal diffusivity, thermal conductivity and specific heat capacity of Dicalcium Lead Propionate (DLP) crystal have been measured following a modified photopyroelectric thermal wave method. The measurements have been carried out with thermal waves propagating along the three principal symmetry directions, so as to bring out the anisotropy in these parameters. The variations of the above parameters through two prominent phase transition temperatures of this crystal have also been measured to understand the variation of these parameters as it undergoes ferroelectric phase transitions. In addition, complete thermal analysis and FTIR measurements have been done on the crystal to bring out the correlation of these results with the corresponding thermal transport properties. All these results are presented and discussed. The data presented in this paper form a comprehensive set of results on the thermal transport properties of this crystal.
Resumo:
The thermal transport properties—thermal diffusivity, thermal conductivity and specific heat capacity—of potassium selenate crystal have been measured through the successive phase transitions, following the photo-pyroelectric thermal wave technique. The variation of thermal conductivity with temperature through the incommensurate (IC) phase of this crystal is measured. The enhancement in thermal conductivity in the IC phase is explained in terms of heat conduction by phase modes, and the maxima in thermal conductivity during transitions is due to enhancement in the phonon mean free path and the corresponding reduction in phonon scattering. The anisotropy in thermal conductivity and its variation with temperature are reported. The variation of the specific heat with temperature through the high temperature structural transition at 745 K is measured, following the differential scanning calorimetric method. By combining the results of photo-pyroelectric thermal wave methods and differential scanning calorimetry, the variation of the specific heat capacity with temperature through all the four phases of K2SeO4 is reported. The results are discussed in terms of phonon mode softening during transitions and phonon scattering by phase modes in the IC phase.
Resumo:
Polytetrafluoroethylene (PTFE) composites filled with Sr2Ce2Ti5O16 ceramic were prepared by a powder processing technique. The structures and microstructures of the composites were investigated by X-ray diffraction and scanning electron microscopy techniques. Differential scanning calorimetry showed that the ceramic filler had no effect on the melting point of the PTFE. The effect of the Sr2Ce2Ti5O16 ceramic content [0–0.6 volume fraction (vf)] on the thermal conductivity, coefficient of thermal expansion (CTE), specific heat capacity, and thermal diffusivity were investigated. As the vf of the Sr2Ce2Ti5O16 ceramic increased, the thermal conductivity of the specimen increased, and the CTE decreased. The thermal conductivity and thermal expansion of the PTFE/Sr2Ce2Ti5O16 composites were improved to 1.7 W m21 8C21 and 34 ppm/8C, respectively for 0.6 vf of the ceramics. The experimental thermal conductivity and CTE were compared with different theoretical models.
Resumo:
The density of states and the low temperature specific heat of higb-Tc superconductors are calculated in a functional integral formalism using the slave boson technique. The manybody calculation in a saddle point approximation shows that the Iow energy sector is dominated by 3 single band. The calculated values of density of states are in good agreement with experimental results.
Resumo:
ic first-order transition line ending in a critical point. This critical point is responsible for the existence of large premartensitic fluctuations which manifest as broad peaks in the specific heat, not always associated with a true phase transition. The main conclusion is that premartensitic effects result from the interplay between the softness of the anomalous phonon driving the modulation and the magnetoelastic coupling. In particular, the premartensitic transition occurs when such coupling is strong enough to freeze the involved mode phonon. The implication of the results in relation to the available experimental data is discussed.
Resumo:
We report on measurements of the adiabatic temperature change in the inverse magnetocaloric Ni50Mn34In16 alloy. It is shown that this alloy heats up with the application of a magnetic field around the Curie point due to the conventional magnetocaloric effect. In contrast, the inverse magnetocaloric effect associated with the martensitic transition results in the unusual decrease of temperature by adiabatic magnetization. We also provide magnetization and specific heat data which enable to compare the measured temperature changes to the values indirectly computed from thermodynamic relationships. Good agreement is obtained for the conventional effect at the second-order paramagnetic-ferromagnetic phase transition. However, at the first-order structural transition the measured values at high fields are lower than the computed ones. Irreversible thermodynamics arguments are given to show that such a discrepancy is due to the irreversibility of the first-order martensitic transition.
Resumo:
The thesis deals with the study of super conducting properties of layered cuprates within the frame work of a modified Lawrence-Doniach (LD) model. The thesis is organized in seven chapters. Chapter I is a survey of the phenomena and theories of conventional superconductivity which can serve as a springboard for launching the study of the new class of oxide superconductors and it also includes a chronological description of the efforts made to overcome the temperature barrier. Chapter II deals with the structure and properties of the copper oxide superconductors and also the experimental constraints on the theories of high te:::nperature superconductivity. A modified Lawrence-Doniach type of phenomenological model which forms the basis of the presnt study is also discussed. In chapter III~ the temperature dependence of the upper critical field both parallel and perpendicular to the layers is determined and the results are compared with d.c. magnetization measurements on different superconducting compoilllds. The temperature and angular dependence of the lower critical field both parallel and perpendicular to the layers is also discussed. Chapters IV, V and VI deal with thermal fluctuation effects on superconducting properties. Fluctuation specific heat is studied in chapter IV. Paraconductivity both parallel and perpendicular to the layers is discussed in chapter V. Fluctuation diamagnetism is dealt with in chapter VI. Dimensional cross over in the fluctuation regime of all these quantities is also discussed. Chapter VII gives a summary of the results and the conclusions arrived at.
Resumo:
The present work emphasises on the synthesis and characterization of electro-active polymer-ceramic nanocomposites which can be used for pyroelectric thermal/infrared detection applications. Two sets of samples belong to polymer-microcrystalline composites have also been investigated in the work. The polymers used in the work have been commercially available ones, but the nanoceramics have been synthesized following simple chemical routes and aqueous organic gel routes. After characterizing the nanoceramics for their structure by powder XRD, they have been dispersed in liquid polymer and sonicated for uniform dispersion. The viscous mixture so formed was cast in the form of films for experimentation. Samples with volume fraction of the ceramic phase varied from 0 to 0.25 have been prepared. Solution growth was followed to prepare microcrystalline samples for the polymer-microcrystalline composites. The physical properties that determine the pyroelectric sensitivity of a material are dielectric constant, dielectric loss, pyroelectric coefficient, thermal conductivity and specific heat capacity. These parameters have been determined for all the samples and compositions reported in this work.The pyroelectric figures of merit for all the samples were determined. The pyroelectric figures of merit that determine the pyroelectric sensitivity of a material are current sensitivity, voltage responsivity and detectivity. All these have been determined for each set of samples and reported in the thesis. In order to assess the flexibility and mouldability of the composites we have measured the Shore hardness of each of the composites by indentation technique and compared with the pyroelectric figures of merit. Some important factors considered during the material fabrication stages were maximum flexibility and maximum figures of merit for pyroelectric thermal/IR detection applications. In order to achieve these goals, all the samples are synthesized as composites of polymers and nano/microcrystalline particles and are prepared in the form of freestanding films. The selected polymer matrices and particle inclusions possess good pyroelectric coefficients, low thermal and dielectric properties, so that good pyroelectric figures of merit could be achieved. The salient features of the work include the particle size of the selected ceramic materials. Since they are in nanometer size it was possible to achieve high flexibility and moldability with high figures of merit for even low volume fractions of inclusions of the prepared nanocrystalline composites. In the case of microcrystalline TGS and DTGS, their composites in PU matrix protect them from fragility and humidity susceptibility and made them for environmental friendly applications.
Resumo:
There exist two central measures of turbulent mixing in turbulent stratified fluids that are both caused by molecular diffusion: 1) the dissipation rate D(APE) of available potential energy APE; 2) the turbulent rate of change Wr, turbulent of background gravitational potential energy GPEr. So far, these two quantities have often been regarded as the same energy conversion, namely the irreversible conversion of APE into GPEr, owing to the well known exact equality D(APE)=Wr, turbulent for a Boussinesq fluid with a linear equation of state. Recently, however, Tailleux (2009) pointed out that the above equality no longer holds for a thermally-stratified compressible, with the ratio ξ=Wr, turbulent/D(APE) being generally lower than unity and sometimes even negative for water or seawater, and argued that D(APE) and Wr, turbulent actually represent two distinct types of energy conversion, respectively the dissipation of APE into one particular subcomponent of internal energy called the "dead" internal energy IE0, and the conversion between GPEr and a different subcomponent of internal energy called "exergy" IEexergy. In this paper, the behaviour of the ratio ξ is examined for different stratifications having all the same buoyancy frequency N vertical profile, but different vertical profiles of the parameter Υ=α P/(ρCp), where α is the thermal expansion coefficient, P the hydrostatic pressure, ρ the density, and Cp the specific heat capacity at constant pressure, the equation of state being that for seawater for different particular constant values of salinity. It is found that ξ and Wr, turbulent depend critically on the sign and magnitude of dΥ/dz, in contrast with D(APE), which appears largely unaffected by the latter. These results have important consequences for how the mixing efficiency should be defined and measured in practice, which are discussed.
Resumo:
Microbial processes in soil are moisture, nutrient and temperature dependent and, consequently, accurate calculation of soil temperature is important for modelling nitrogen processes. Microbial activity in soil occurs even at sub-zero temperatures so that, in northern latitudes, a method to calculate soil temperature under snow cover and in frozen soils is required. This paper describes a new and simple model to calculate daily values for soil temperature at various depths in both frozen and unfrozen soils. The model requires four parameters average soil thermal conductivity, specific beat capacity of soil, specific heat capacity due to freezing and thawing and an empirical snow parameter. Precipitation, air temperature and snow depth (measured or calculated) are needed as input variables. The proposed model was applied to five sites in different parts of Finland representing different climates and soil types. Observed soil temperatures at depths of 20 and 50 cm (September 1981-August 1990) were used for model calibration. The calibrated model was then tested using observed soil temperatures from September 1990 to August 2001. R-2-values of the calibration period varied between 0.87 and 0.96 at a depth of 20 cm and between 0.78 and 0.97 at 50 cm. R-2 -values of the testing period were between 0.87 and 0.94 at a depth of 20cm. and between 0.80 and 0.98 at 50cm. Thus, despite the simplifications made, the model was able to simulate soil temperature at these study sites. This simple model simulates soil temperature well in the uppermost soil layers where most of the nitrogen processes occur. The small number of parameters required means, that the model is suitable for addition to catchment scale models.
Resumo:
Thermal insulation is used to protect the heated or cooled surfaces by the low thermal conductivity materials. The rigid ricin polyurethane foams (PURM) are used for thermal insulation and depend on the type and concentration of blowing agent. Obtaining PURM occurs by the use of polyol, silicone, catalyst and blowing agent are pre -mixed, reacting with the isocyanate. The glass is reusable, returnable and recyclable heat insulating material, whose time of heat dissipation determines the degree of relaxation of its structure; and viscosity determines the conditions for fusion, operating temperatures, annealing, etc. The production of PURM composites with waste glass powder (PV) represents economical and renewable actions of manufacturing of thermal insulating materials. Based on these aspects, the study aimed to produce and characterize the PURM composites with PV, whose the mass percentages were 5, 10, 20, 30, 40 and 50 wt%. PURM was obtained commercially, while the PV was recycled from the tailings of the stoning process of a glassmaking; when the refining process was applied to obtain micrometer particles. The PURM + PV composites were studied taking into account the standard sample of pure PURM and the influence of the percentage of PV in this PURM matrix. The results of the chemical, physical and morphological characterization were discussed taking into account the difference in the microstructural morphology of the PURM+PV composites and the pure PURM, as well the results of the physicochemical, mechanical e thermophysical tests by values obtained of density, hardness, compressive strength, specific heat, thermal conductivity and diffusivity. In general, the structure of pure PURM showed large, elongated and regular pores, while PURM+PV composites showed irregular, small and rounded pores with shapeless cells. This may have contributed to reducing their mechanical strength, especially for PURM - PV50. The hardness and density were found to have a proportional relationship with the PV content on PURM matrix. The specific heat, thermal diffusivity and thermal conductivity showed proportional relationship to each other. So, this has been realized that the increasing the PV content on PURM matrix resulted in the rise of diffusivity and thermal conductivity and the decrease of the specific heat. However, the values obtained by the PURM composites were similar the values of pure PURM, mainly the PURM-PV5 and PURM-PV10. Therefore, these composites can be applied like thermal insulator; furthermore, their use could reduce the production costs and to preserve the environment
Resumo:
In this study were projected, built and tested an electric solar dryer consisting of a solar collector, a drying chamber, an exhaust fan and a fan to promote forced hot air convection. Banana drying experiments were also carried out in a static column dryer to model the drying and to obtain parameters that can be used as a first approximation in the modeling of an electric solar dryer, depending on the similarity of the experimental conditions between the two drying systems. From the banana drying experiments conducted in the static column dryer, we obtained food weight data as a function of aqueous concentration and temperature. Simplified mathematical models of the banana drying were made, based on Fick s and Fourier s second equations, which were tested with the experimental data. We determined and/or modeled parameters such as banana moisture content, density, thin layer drying curves, equilibrium moisture content, molecular diffusivity of the water in banana DAB, external mass transfer coefficient kM, specific heat Cp, thermal conductivity k, latent heat of water evaporation in the food Lfood, time to heat food, and minimum energy and power required to heat the food and evaporate the water. When we considered the shrinkage of radius R of a banana, the calculated values of DAB and kM generally better represent the phenomenon of water diffusion in a solid. The latent heat of water evaporation in the food Lfood calculated by modeling is higher than the latent heat of pure water evaporation Lwater. The values calculated for DAB and KM that best represent the drying were obtained with the analytical model of the present paper. These values had good agreement with those assessed with a numeric model described in the literature, in which convective boundary condition and food shrinkage are considered. Using parameters such as Cp, DAB, k, kM and Lfood, one can elaborate the preliminary dryer project and calculate the economy using only solar energy rather than using solar energy along with electrical energy