988 resultados para Species differentiation
Resumo:
Mycobacterium tuberculosis complex (MTBC) members are causative agents of human and animal tuberculosis. Differentiation of MTBC members is required for appropriate treatment of individual patients and for epidemiological purposes. Strains from six MTBC species - M. tuberculosis, M. bovis subsp. bovis, M. bovis BCG, M. africanum, M. pinnipedii, and "M. canetti" - were studied using gyrB-restriction fragment length polymorphism (gyrB-RFLP) analysis. A table was elaborated, based on observed restriction patterns and published gyrB sequences. To evaluate applicability of gyrB-RFLP at Instituto Adolfo Lutz, São Paulo, Mycobacterial Reference Laboratory, 311 MTBC clinical isolates, previously identified using traditional methods as M. tuberculosis (306), M. bovis (3), and M. bovis BCG (2), were analyzed by gyrB-RFLP. All isolates were correctly identified by the molecular method, but no distinction between M. bovis and M. bovis BCG was obtained. Differentiation of M. tuberculosis and M. bovis is of utmost importance, because they require different treatment schedules. In conclusion, gyrB-RFLP is accurate and easy-to-perform, with potential to reduce time needed for conventional differentiation methods. However, application for epidemiological studies remains limited, because it cannot differentiate M. tuberculosis from M. africanum subtype II, and "M. canetti", M. africanum subtype I from M. pinnipedii, and. M. bovis from M. bovis BCG.
Resumo:
Anopheles (Nyssorhynchus) benarrochi, An. (N.) oswaldoi, and An. (N.) rangeli are the most common anthropophilic mosquitoes in the southern Colombian state of Putumayo. Adult females are most commonly collected in epidemiological studies, and this stage poses significant problems for correct identification, due to overlapping inter-specific morphological characters. Although An. rangeli is easy to identify, the morphological variant of An. benarrochi found in the region and An. oswaldoi are not always easy to separate. Herein we provide a rapid molecular method to distinguish these two species in Southern Colombia. Sequence data for the second internal transcribed spacer (ITS2) region of rDNA was generated for link-reared progeny of An. benarrochi and An. oswaldoi, that had been identified using all life stages. ITS2 sequences were 540 bp in length in An. benarrochi (n = 9) and 531 bp in An. oswaldoi (n = 7). Sequences showed no intra-specific variation and ungapped inter-specific sequence divergence was 6.4%. Species diagnostic banding patterns were recovered following digestion of the ITS2 amplicons with the enzyme Hae III as follows: An. benarrochi (365, 137, and 38 bp) and An. oswaldoi (493 and 38 bp). This polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay provides rapid, accurate, and inexpensive species diagnosis of adult females. This will benefit future epidemiological studies and, as PCR amplification can be achieved using a single mosquito leg, the remaining specimen can be either retained as a morphological voucher or further used in vector incrimination studies. That An. benarrochi comprises a complex of at least two species across Latin America is discussed.
Resumo:
Anopheles (Anopheles) intermedius and Anopheles (Ano.) mattogrossensis are Brazilian anopheline species belonging to the scarcely studied Anopheles subgenus. Few studies have been done on the genetic differentiation of these species. Both species have been found infected by Plasmodium and are sympatric with other anopheline species from the Nyssorhynchus subgenus. Eighteen enzymatic loci were analyzed in larval specimens of An. intermedius and An. mattogrossensis aiming to estimate the variability and genetic differentiation between these species. An. mattogrossensis population showed higher genetic variability (P = 44.4 and Ho = 0.081 ± 0.031) than that of An. intermedius (P = 33.3 and Ho = 0.048 ± 0.021). Most analyzed loci showed genotypic frequencies according to Hardy-Weinberg equilibrium, except for LAP1 and LAP2 in An. intermedius, and EST1 and PGM loci in An. mattogrossensis. The genetic distance between these species (D = 0.683) was consistent with the inter-specific values reported for Anopheles subgenus. We verified that the polymorphism and heterozygosity percentile values found in both species and compared to those in the literature, showed no relation between the level of isozyme variability and geographical distribution. The low variability found in these two species is probably more related to the niche they occupy than to their geographic distribution.
Resumo:
Ecological niche modelling was used to predict the potential geographical distribution of Rhodnius nasutus Stål and Rhodnius neglectus Lent, in Brazil and to investigate the niche divergence between these morphologically similar triatomine species. The distribution of R. neglectus covered mainly the cerrado of Central Brazil, but the prediction maps also revealed its occurrence in transitional areas within the caatinga, Pantanal and Amazon biomes. The potential distribution of R. nasutus covered the Northeastern Region of Brazil in the semi-arid caatinga and the Maranhão babaçu forests. Clear ecological niche differences between these species were observed. R. nasutus occurred more in warmer and drier areas than R. neglectus. In the principal component analysis PC1 was correlated with altitude and temperature (mainly temperature in the coldest and driest months) and PC2 with vegetation index and precipitation. The prediction maps support potential areas of co-occurrence for these species in the Maranhão babaçu forests and in caatinga/cerrado transitional areas, mainly in state of Piaui. Entomologists engaged in Chagas disease vector surveillance should be aware that R. neglectus and R. nasutus can occur in the same localities of Northeastern Brazil. Thus, the identification of bugs in these areas should be improved by applying morphometrical and/or molecular methods.
Resumo:
Anopheles triannulatus s.l. is a malaria vector with a wide geographic distribution, ranging from Argentina-Nicaragua and Trinidad. Here we analysed sequences of two genes, timeless and cpr, to assess the genetic variability and divergence among three sympatric cryptic species of this complex from Salobra, central-western Brazil. The timeless gene sequences did not conclusively differentiate Anopheles halophylus and An. triannulatus species "C". However, a partial separation has been observed between these species and An. triannulatus s.s. Importantly, the analysis of the cpr gene sequences revealed fixed differences, no shared polymorphisms and considerable genetic differentiation among the three species of the An. triannulatus complex. The results confirm that An. triannulatus s.s., An. halophylus and An. triannulatus species C are distinct taxa, with the latter two likely representing a more recent speciation event.
Resumo:
This study reports the first genetic characterisation of Cryptosporidium isolates in Brazil using real-time polymerase chain reaction (RT-PCR). A total of 1,197 faecal specimens from children and 10 specimens from human immunodeficiency virus-infected patients were collected between 1999-2010 and screened using microscopy. Forty-eight Cryptosporidium oocyst-positive isolates were identified and analysed using a generic TaqMan assay targeting the 18S rRNA to detect Cryptosporidium species and two other TaqMan assays to identify Cryptosporidium hominis and Cryptosporidium parvum. The 18S rRNA assay detected Cryptosporidium species in all 48 of the stool specimens. The C. parvum TaqMan assay correctly identified five/48 stool samples, while 37/48 stool specimens were correctly amplified in the C. hominis TaqMan assay. The results obtained in this study support previous findings showing that C. hominis infections are more prevalent than C. parvum infections in Brazil and they demonstrate that the TaqMan RT-PCR procedure is a simple, fast and valuable tool for the detection and differentiation of Cryptosporidium species.
Resumo:
The cuticular hydrocarbons of the Triatoma sordida subcomplex (Hemiptera: Reduviidae: Triatominae) were ana-lysed by gas chromatography and their structures identified by mass spectrometry. They comprised mostly n-alkanes and methyl-branched alkanes with one-four methyl substitutions. n-alkanes consisted of a homologous series from C21-C33 and represented 33-45% of the hydrocarbon fraction; n-C29 was the major component. Methyl-branched alkanes showed alkyl chains from C24-C43. High molecular weight dimethyl and trimethylalkanes (from C35-C39) represented most of the methyl-branched fraction. A few tetramethylalkanes were also detected, comprising mostly even-numbered chains. Several components such as odd-numbered 3-methylalkanes, dimethylalkanes and trimethylalkanes of C37 and C39 showed patterns of variation that allowed the differentiation of the species and populations studied. Triatoma guasayana and Triatoma patagonica showed the most distinct hydrocarbon patterns within the subcomplex. The T. sordida populations from Brazil and Argentina showed significantly different hydrocarbon profiles that posed concerns regarding the homogeneity of the species. Triatoma garciabesi had a more complex hydrocarbon pattern, but it shared some similarity with T. sordida. The quantitative and qualitative variations in the cuticular hydrocarbons may help to elucidate the relationships between species and populations of this insect group.
Resumo:
Lutzomyia longipalpis s.l. is the main vector of American visceral leishmaniasis (AVL) and occurs as a species complex. DNA samples from two Brazilian sympatric species that differ in pheromone and courtship song production were used to analyse molecular polymorphisms in an odorant-binding protein ( obp29 ) gene. OBPs are proteins related to olfaction and are involved in activities fundamental to survival, such as foraging, mating and choice of oviposition site. In this study, the marker obp29 was found to be highly polymorphic in Lu. longipalpis s.l. , with no fixed differences observed between the two species. A pairwise fixation index test indicated a moderate level of genetic differentiation between the samples analysed.
Resumo:
The species Formica aquilonia and F. lugubris of the mound-building red wood ants have a disjunct boreoalpine distribution in Europe. The populations of F. aquilonia in Finland, Switzerland and the British Isles show little genetic differentiation, whereas the populations of F. lugubris show considerable differentiation. The Central European populations morphologically identified as F. lugubris can be genetically divided into two groups (here called types A and B). Type B is found in the Alps and the Jura mountains, and is genetically inseparable from F. aquilonia. Type A lives sympatrically with type B in the Jura mountains and is also found in the British Isles. Sympatry of the two types in the Jura shows that these are separate species. It remains open whether type B is morphologically atypical F. aquilonia or whether it is a separate species, perhaps with a past history of introgression between F. aquilonia and F. lugubris. The gene frequencies in the Finnish populations of F. lugubris differ from those of both types A and B. Genetic differences within F. lugubris indicate that the populations have evolved separately for a long time. The social structure of F. lugubris colonies also shows geographic variation. The nests in Finland and the British Isles seem to be mainly monogynous and monodomous, whereas the nests in Central Europe are polygynous and form polydomous colonies. F. aquilonia has polygynous and polydomous colonies in all populations studied.
Resumo:
Species that differ in their social system, and thus in traits such as group size and dispersal timing, may differ in their use of resources along spatial, temporal, or dietary dimensions. The role of sociality in creating differences in habitat use is best explored by studying closely related species or socially polymorphic species that differ in their social system, but share a common environment. Here we investigate whether five sympatric Anelosimus spider species that range from nearly solitary to highly social differ in their use of space and in their phenology as a function of their social system. By studying these species in Serra do Japi, Brazil, we find that the more social species, which form larger, longer-lived colonies, tend to live inside the forest, where sturdier, longer lasting vegetation is likely to offer better support for their nests. The less social species, which form single-family groups, in contrast, tend to occur on the forest edge where the vegetation is less robust. Within these two microhabitats, species with longer-lived colonies tend to occupy the potentially more stable positions closer to the core of the plants, while those with smaller and shorter-lived colonies build their nests towards the branch tips. The species further separate in their use of common habitat due to differences in the timing of their reproductive season. These patterns of habitat use suggest that the degree of sociality can enable otherwise similar species to differ from one another in ways that may facilitate their co-occurrence in a shared environment, a possibility that deserves further consideration.
Resumo:
BAFF (BLyS, TALL-1, THANK, zTNF4) is a member of the TNF superfamily that specifically regulates B lymphocyte proliferation and survival. Mice transgenic (Tg) for BAFF develop an autoimmune condition similar to systemic lupus erythematosus. We now demonstrate that BAFF Tg mice, as they age, develop a secondary pathology reminiscent of Sjögren's syndrome (SS), which is manifested by severe sialadenitis, decreased saliva production, and destruction of submaxillary glands. In humans, SS also correlates with elevated levels of circulating BAFF, as well as a dramatic upregulation of BAFF expression in inflamed salivary glands. A likely explanation for disease in BAFF Tg mice is excessive survival signals to autoreactive B cells, possibly as they pass through a critical tolerance checkpoint while maturing in the spleen. The marginal zone (MZ) B cell compartment, one of the enlarged B cell subsets in the spleen of BAFF Tg mice, is a potential reservoir of autoreactive B cells. Interestingly, B cells with an MZ-like phenotype infiltrate the salivary glands of BAFF Tg mice, suggesting that cells of this compartment potentially participate in tissue damage in SS and possibly other autoimmune diseases. We conclude that altered B cell differentiation and tolerance induced by excess BAFF may be central to SS pathogenesis.
Resumo:
Comparative genomic studies are revealing that, in sharp contrast with the strong stability found in birds and mammals, sex determination mechanisms are surprisingly labile in cold-blooded vertebrates, with frequent transitions between different pairs of sex chromosomes. It was recently suggested that, in context of this high turnover, some chromosome pairs might be more likely than others to be co-opted as sex chromosomes. Empirical support, however, is still very limited. Here we show that sex-linked markers from three highly divergent groups of anurans map to Xenopus tropicalis scaffold 1, a large part of which is homologous to the avian sex chromosome. Accordingly, the bird sex determination gene DMRT1, known to play a key role in sex differentiation across many animal lineages, is sex linked in all three groups. Our data provide strong support for the idea that some chromosome pairs are more likely than others to be co-opted as sex chromosomes because they harbor key genes from the sex determination pathway.
Resumo:
Ten microsatellite loci and a partial sequence of the COII mitochondrial gene were used to investigate genetic differentiation in B. terrestris, a bumble bee of interest for its high-value crop pollination. The analysis included eight populations from the European continent, five from Mediterranean islands (six subspecies altogether) and one from Tenerife (initially described as a colour form of B. terrestris but recently considered as a separate species, B. canariensis). Eight of the 10 microsatellite loci displayed high levels of polymorphism in most populations. In B. terrestris populations, the total number of alleles detected per polymorphic locus ranged from 3 to 16, with observed allelic diversity from 3.8 +/- 0.5 to 6.5 +/- 1.4 and average calculated heterozygosities from 0.41 +/- 0.09 to 0.65 +/- 0.07. B. canariensis showed a significantly lower average calculated heterozygosity (0.12 +/- 0.08) and observed allelic diversity (1.5 +/- 0.04) as compared to both continental and island populations of B. terrestris. No significant differentiation was found among populations of B. terrestris from the European continent. In contrast, island populations were all significantly and most of them strongly differentiated from continental populations. B. terrestris mitochondrial DNA is characterized by a low nucleotide diversity: 0.18% +/- 0.07%, 0.20% +/- 0.04% and 0.27% +/- 0.04% for the continental populations, the island populations and all populations together, respectively. The only haplotype found in the Tenerife population differs by a single nucleotide substitution from the most common continental haplotype of B. terrestris. This situation, identical to that of Tyrrhenian islands populations and quite different from that of B. lucorum (15 substitutions between terrestris and lucorum mtDNA) casts doubts on the species status of B. canariensis. The large genetic distance between the Tenerife and B. terrestris populations estimated from microsatellite data result, most probably, from a severe bottleneck in the Canary island population. Microsatellite and mitochondrial DNA data call for the protection of the island populations of B. terrestris against importation of bumble bees of foreign origin which are used as crop pollinators.
Resumo:
Although the adder (Vipera berus) has a large distribution area, this species is particularly threatened in Western Europe due to high habitat fragmentation and human persecution. We developed 13 new microsatellite markers in order to evaluate population structure and genetic diversity in the Swiss and French Jura Mountains, where the species is limited to only a few scattered populations. We found that V. berus exhibits a considerable genetic differentiation among populations (global F-ST = 0.269), even if these are not geographically isolated. Moreover, the genetic diversity within populations in the Jura Mountains and in the less perturbed Swiss Alps is significantly lower than in other French populations, possibly due to post-glacial recolonisation processes. Finally, in order to minimize losses of genetic diversities within isolated populations, suggestions for the conservation of this species in fragmented habitats are proposed.
Resumo:
To test whether quantitative traits are under directional or homogenizing selection, it is common practice to compare population differentiation estimates at molecular markers (F(ST)) and quantitative traits (Q(ST)). If the trait is neutral and its determinism is additive, then theory predicts that Q(ST) = F(ST), while Q(ST) > F(ST) is predicted under directional selection for different local optima, and Q(ST) < F(ST) is predicted under homogenizing selection. However, nonadditive effects can alter these predictions. Here, we investigate the influence of dominance on the relation between Q(ST) and F(ST) for neutral traits. Using analytical results and computer simulations, we show that dominance generally deflates Q(ST) relative to F(ST). Under inbreeding, the effect of dominance vanishes, and we show that for selfing species, a better estimate of Q(ST) is obtained from selfed families than from half-sib families. We also compare several sampling designs and find that it is always best to sample many populations (>20) with few families (five) rather than few populations with many families. Provided that estimates of Q(ST) are derived from individuals originating from many populations, we conclude that the pattern Q(ST) > F(ST), and hence the inference of directional selection for different local optima, is robust to the effect of nonadditive gene actions.