979 resultados para Space charge.
Resumo:
Current-based microscopic defect analysis methods with optical filling techniques, namely current deep level transient spectroscopy (I-DLTS) and thermally stimulated current (TSC), have been used to study defect levels in a high resistivity silicon detector (p(+)-n-n(+)) induced by very high fluence neutron (VHFN) irradiation (1.7x10(15) n/cm(2)). As many as fourteen deep levels have been detected by I-DLTS. Arrhenius plots of the I-DLTS data have shown defects with energy levels ranging from 0.03 eV to 0.5 eV in the energy band gap. Defect concentrations of relatively shallow levels (E(t) < 0.33 eV) are in the order of 10(13)cm(-3), while those for relatively deep levels (E(t) > 0.33 eV) are in the order of 10(14) cm(-3). TSC data have shown similar defect spectra. A full depletion voltage of about 27,000 volts has been estimated by C-V measurements for the as-irradiated detector, which corresponds to an effective space charge density (N-eff) in the order of 2x10(14) cm(-3). Both detector leakage current and full depletion voltage have been observed to increase with elevated temperature annealing (ETA). The increase of the full depletion voltage corresponds to the increase of some deep levels, especially the 0.39 eV level. Results of positron annihilation spectroscopy have shown a decrease of total concentration of vacancy related defects including vacancy clusters with ETA, suggesting the breaking up of vacancy clusters as possible source of vacancies for the formation of single defects during the reverse anneal.
Resumo:
With contributions from both three-dimensional (3D) electrons in heavily doped contacts and 2D electrons in the accumulation layer, a self-consistent calculation based on effective mass theory is presented for studying the anomalous behaviour of the quasi-bound levels in the accumulation layer and that in the central well of an asymmetric double barrier structure (DBS). By choosing the thickness of the incident barrier properly, it is revealed that these two quasi-bound levels may merge into a unique bound level in the off-resonance regime which shows a very good 2D nature in contrast to the conventional picture for level crossing. An evident intrinsic I-V bistability is also shown. It is noticeable that the effect of charge build-up in the central well is so strong that the electric field in the incident barrier even decreases when the applied bias increases within the resonant region.
Resumo:
The sidegating effect on the Schottky barrier in ion-implanted GaAs was investigated with capacitance-voltage profiling at various negative substrate voltages. It was demonstrated that the negative substrate voltage modulates the Schottky depletion region width as well as the space charge region at the substrate-active channel interface. (C) 1995 American Institute of Physics.
Resumo:
The electrical properties of annealed undoped n-type InP are studied by temperature dependent Hall effect (TDH) and current-voltage (I-V) measurements for semiconducting and semi-insulating samples, receptively. Defect band conduction in annealed semiconducting InP can be observed from TDH measurement, which is similar to those of as-grown unintentionally doped InP with low carrier concentration and moderate compensation. The I-V curves of annealed undoped SI InP exhibit ohmic property in the applied field region up to the onset of breakdown. Such a result is different from that of as-grown Fe-doped SI InP which has a nonlinear region in I-V curve explained by the theory of space charge limited current.
Resumo:
Radiation-induced electrical changes in both space charge region (SCR) of Si detectors and bulk material (BM) have been studied for samples of diodes and resistors made on Si materials with different initial resistivities. The space charge sign inversion fluence (Phi(inv)) has been found to increase linearly with the initial doping concentration (the reciprocal of the resistivity), which gives improved radiation hardness to Si detectors fabricated from low resistivity material. The resistivity of the BM, on the other hand, has been observed to increase with the neutron fluence and approach a saturation value in the order of hundreds k Omega cm at high fluences, independent of the initial resistivity and material type. However, the fluence (Phi(s)), at which the resistivity saturation starts, increases with the initial doping concentrations and the value of Phi(s) is in the same order of that of Phi(inv) for all resistivity samples. Improved radiation hardness can also be achieved by the manipulation of the space charge concentration (N-eff) in SCR, by selective filling and/or freezing at cryogenic temperatures the charge state of radiation-induced traps, to values that will give a much smaller full depletion voltage. Models have been proposed to explain the experimental data.
Resumo:
In order to reduce the influence of the stray electric field of the buncher in the axial injection system of SFC and to improve the injection efficiency of SFC, the existing buncher electrode is investigated and a new electrode is designed. The influences of the electric field to the beams for the both cases are simulated. The simulation results show that the bunching efficiency is improved from 55% to 74% with the new electrode. At the same time, the influence of the space charge is computed and according to the results, the location of the buncher is readjusted too.
Resumo:
Electron beam longitudinal temperature is an important parameter on electron cooling devise. In this paper, electron beam longitudinal temperature on the HIRFL-CSR electron cooling devise is deduced from four important factors-flattened distribution, electrostatic accelerate, space charge effect and beam scattering.
Resumo:
A 52 MHz Radio Frequency Quadrupole (RFQ) linear accelerator (linac) is designed to serve as an initial structure for the SSC-Linac system (injector into Separated Sector Cyclotron). The designed injection and output energy are 3.5 keV/u and 143 keV/u, respectively. The beam dynamics in this RFQ have been studied using a three-dimensional Particle-In-Cell (PIC) code BEAMPATH. Simulation results show that this R,FQ structure is characterized by stable values of beam transmission efficiency (at least 95%) for both zero-current mode and the space charge dominated regime. The beam accelerated in the RFQ has good quality in both transverse and longitudinal directions, and could easily be accepted by Drift Tube Linac (DTL). The effect of the vane error and that of the space charge on the beam parameters have been studied as well to define the engineering tolerance for RFQ vane machining and alignment.
Resumo:
A new SSC (Separated Sector Cyclotron)-Linac is being designed to serve as an injector for the SSC at the HIRFL (Heavy Ion Research Facility Lanzhou). The beam intensity at the LEBT (Low Energy Beam Transport) for the heavy ions after the selection is typically low and the space charge effects are inconspicuous. The space charge effects become obvious when the beam current increases to a few hundred microamperes. The emittance growth deriving from the space charge effects may be particularly troublesome for the following linac and cyclotron. An optical system containing three solenoids has been designed for the LEBT to limit the beam emittance and to avoid the unnecessary beam loss in the cyclotron, as well as for the purpose of immunizing the LEBT emittance growth due to the space charge effects. The results of the PIG (Particle-In-Cell) mode simulation illustrate that this channel could limit the beam emittance growth and increase the beam brightness.
Resumo:
The emittance of an extracted ion beam can be estimated to first order by a series of three linear independent profile measurements. This estimation is restricted to the evaluation of an upper limit of the emittance value for a homogeneous, nonfilamented beam. The beam is assumed to be round, respectively elliptical, without any structure of the intensity distribution, no space charge has been assumed for the drifting beam, and the optics is assumed to be linear. Instead of using three different drift sections, a linear focusing element with three different focusing strengths can be used. Plotting the beam radius as function of focusing strength, three independent solutions can be used to calculate the Twiss parameters alpha, beta, and gamma and furthermore the emittance epsilon. Here we describe the measurements which have been performed with the SECRAL ion source at Institute of Modern Physics Lanzhou.
Resumo:
本文比较系统地介绍了扇聚焦回旋加速器内部的束流动力学及其注入系统的一般理论,并结合两台具体的扇聚焦回旋加速器的设计讨论了在回旋加速器以及静电反射镜内空间电荷效应对束流的影响。第一章简单介绍了回旋加速器的发展历史及分类、强流回旋加速器的应用,加速器驱动系统ADS(Accelerator Driving System)、能量放大器EA(Energy Amplifier)方案以及本文工作的主要内容。第二章首先介绍了扇聚焦回旋加速器的基本理论,包括扇聚焦回旋加速器内的轨道理论(静态平衡轨道及加速轨道性质)以及相空间的描述方法等。然后详细讨论了回旋加速器内空间电荷效应的影响及研究方法,包括空间电荷作用下粒子的运动方程、空间电荷电场的不同种类、求解空间电荷电场的基本方法和模型以及空间电荷效应对束流轨道特性和相空间传输特性的影响等。在本章的第4节中,介绍了两台强流扇聚焦回旋加速器(50MeV-6mA H_2~+超导扇聚焦回旋加速器和17MeV-2mA H~-扇聚焦回旋加速器)的具体设计步骤和计算结果,讨论了这两台扇聚焦回旋加速器中加速轨道和相空间的传输以及空间电荷效应的影响。最后,简单介绍了设计时所使用的两个计算程序AGORA_SCE和CINEZ_SCE。第三章首先简单介绍了用于扇聚焦回旋加速器的各种注入方法以及在轴向注入时所采用的不同种类的静电偏转镜。然后详细介绍了目前最常用的螺旋扇型静电偏转镜的基本工作原理,如参考粒子的运动轨道及偏转镜的光学性质等,讨论了螺旋线型静电偏转镜中空间电荷效应的影响。最后仍然以50MeV-6mAH_2~+和17MeV-2mA H~-这两台扇聚焦回旋加速器为例,对它们的静电偏转镜进行了设计,并分别研究了它们在空间电荷效应影响下的轨道特性及相空间传输特性。第四章简单介绍了工作中所用到的一些计算工具,如三维电磁场计算程序MAFIA以及等时场分析程序EQUIL,并给出了17MeV-2mA H~-扇聚焦回旋加速器的等时场的计算结果。论文的最后部分简单总结了本文的工作,并提出了今后进一步的工作设想。
Resumo:
电子冷却是利用具有相同平均速度运动的强流冷电子束与热的离子束在储存环的一小部分相互重叠,通过多次库仑相互作用,达到降低束流发射“度和动量散度,改善束流品质的一种有效方法。HIRFL-CSR就是采用电子冷却方法迅速压缩储存环中离子束的横向包络、发散角和纵向动量散度,从而获得高品质的重离子束流。论文论述了两体碰撞模型,得到了冷却力和冷却时间的解析表达式;并以此为依据,编程模拟了冷却过程对储存环中离子束发射度和动量散度的影响。本论文的重点是通过求解强流电子束自身的空间电荷场,得到了电子束速度的径向梯度分布;获得了电子束在自身空间电荷场和螺线管纵向磁场的作用下产生横向漂移速度和由此引起的电子束横向温度的变化。为了减小强流电子束的空间电荷场,CSR的电子冷却系统将首次采用空心电子束对储存环中的重离子束流进行冷却。分析了空心电子束的空间电荷场,研究了其对电子束速度和电子束温度的影响,并将结果与实心束的情形进行了详细地比较。与此同时,利用电子束密度的K-V分布,研究了强流电子束在纵向螺线管场中运动的包络方程,采用数值计算方法,得到了CSR电子冷却系统强流电子束在冷却段螺线管中的包络振荡特性。另外,论文还对电子冷却在储存环中的附加影响进行了一些探讨。从Betatron运动方程出发研究了斜四极场和螺线管场存在时束流的幅度的耦合效应,理论上分析了斜四极场存在时束流发射度的变化;通过求解储存环中粒子束的空间电荷场,计算了CSRm中的粒子束空间电荷效应造成的储存环工作点的移动;对于强流电子束空间电荷场对储存环的频移大小也进行了分析;此外,对电子冷却对储存环中束流寿命的影响进行了初步研究。论文最后对CSrm35keV电子冷却系统的机械安装、磁场的测量以及初步的调试结果也给予了介绍。
Resumo:
本文简要地介绍了有机半导体中载流子迁移率的几种模型,着重阐述了测量有机半导体中载流子迁移率的各种方法的测试原理。主要有如下几种:稳态(CW)直流电流-电压特性法(steady-state DC JV),飞行时间法(time of flight,TOF),瞬态电致发光法(transient electroluminescence,transient EL),瞬态电致发光法的修正方法即双脉冲方波法和线性增压载流子瞬态法(carrier extraction by linearly increasing voltage,CELIV),暗注入空间电荷限制电流(dark injection space charge limited current,DI SCLC),场效应晶体管方法(field-effect transistor,FET),时间分辨微波传导技术(time-resolved microwave conductivity technique,TRMC),电压调制毫米波谱(voltage-modulated millimeter-wave spectroscopy,VMS)光诱导瞬态斯塔克谱方法(photoi...