969 resultados para Soybean seed
Resumo:
The use of unconventional sources of K for plants has been widely studied, but the effects of alternative materials on physiological seed quality are still relatively unknown. The objective of this study was to evaluate the physiological quality of soybean and wheat seeds after using different potassium sources in a crop succession. The experimental design was a completely randomized block with four replications. Treatments consisted of three K sources (KCl, alkaline rock and ground phonolite, with 58%, 11% and 8.42% of K2O, respectively) applied in four doses (0, 25, 50 and 100 kg K2O ha-1). Potassium doses were applied in soybean and their residual effects were evaluated on the following wheat crop. Soybean and wheat seeds were evaluated immediately after harvesting by tests for moisture content, seed weight, germination, first count, electrical conductivity, seedling length and seedling dry matter. Soybean plants fertilized with alternative sources of K produced heavier seeds with a lower coat permeability compared to KCl; the physiological quality of soybean seeds and the weight of wheat seeds increase due to higher K2O doses, independently of their source.
Resumo:
The objective of this study was to investigate the possibility of using hydric restriction as a method for evaluating vigor of soybean seeds. The soybean seeds, cultivar BRS 245RR, represented by four different seed lots, were characterized by germination and vigor. For the treatment of hydric restriction and temperature, the combination of substrate water potential and temperature were the following: deionized water (0.0 MPa); polyethylene glycol (PEG 6000) aqueous solution (-0.1, -0.3 and -0.5 MPa); and four temperatures (20 ºC, 25 ºC, 30 ºC, and 35 ºC), respectively. A completely randomized experimental design was used, with four replications per treatment, and the ANOVA was performed individually for each combination of temperature and water potential of substrate. According to results obtained, the test of hydric restriction has the same efficiency of the accelerated aging test in estimating vigor of soybean seeds, cv. BRS 245RR, when water potentials of -0.1 MPa or -0.3 MPa at a temperature of 25 ºC, or -0.3 MPa at a temperature of 30 ºC are used.
Resumo:
The objective of this study was to evaluate physiological quality, content, and activity of antioxidants, in soybean seeds subjected to accelerated aging during different periods. Seeds of cultivars BRS 258, BRS 262 and BRS 268, subjected to accelerated aging during 12, 24, 36 and 48 hours and non-aged seeds were used. After each aging period, the seed were evaluated by tests of: germination; first count and tetrazolium. The total of phenolic compounds, total flavonoides, total of isoflavones, and activity for eliminating ABTS●+ radicals were quantified. There were differences among cultivars according to vigor and viability only after seeds were aged. Cultivars BRS 158 and BRS 268 have shown better seed physiological quality in each aging period; however, not presenting higher amounts of isoflavones and efficiency in removing free radicals. For all cultivars, the values for total of phenolic compounds, as well as total of flavonoids have shown quadratic positive behavior; the values for isoflavones remained constant and the vigor and viability showed contrary trend to activity of antioxidant agents.
Resumo:
The difficulty on identifying, lack of segregation systems and absence of suitable standards for coexistence of non trangenic and transgenic soybean are contributing for contaminations that occur during productive system. The objective of this study was to evaluate the efficiency of two methods for detecting mixtures of seeds genetically modified (GM) into samples of non-GM soybean, in a way that seed lots can be assessed within the standards established by seed legislation. Two sizes of soybean samples (200 and 400 seeds), cv. BRSMG 810C (non-GM) and BRSMG 850GRR (GM), were assessed with four contamination levels (addition of GM seeds, for obtaining 0.0%, 0.5%, 1.0%, and 1.5% contamination), and two detection methods: immunoassay of lateral flux (ILF) and bioassay (pre-imbibition into 0.6% herbicide solution; 25 ºC; 16 h). The bioassay is efficient in detecting presence of GM seeds in seed samples of non-GM soybean, even for contamination lower than 1.0%, provided that seeds have high physiological quality. The ILF was positive, detecting the presence of target protein in contaminated samples, indicating test effectiveness. There was significant correlation between the two detection methods (r = 0.82; p < 0.0001). Sample size did not influence efficiency of the two methods in detecting presence of GM seeds.
Resumo:
The objective of this study was to investigate the effect of elevated (550 ± 17 μmol mol−1) CO2 concentration ([CO2]) on leaf ultrastructure, leaf photosynthesis and seed yield of two soybean cultivars [Glycine max (L.) Merr. cv. Zhonghuang 13 and cv. Zhonghuang 35] at the Free-Air Carbon dioxide Enrichment (FACE) experimental facility in North China. Photosynthetic acclimation occurred in soybean plants exposed to long-term elevated [CO2] and varied with cultivars and developmental stages. Photosynthetic acclimation occurred at the beginning bloom (R1) stage for both cultivars, but at the beginning seed (R5) stage only for Zhonghuang 13. No photosynthetic acclimation occurred at the beginning pod (R3) stage for either cultivar. Elevated [CO2] increased the number and size of starch grains in chloroplasts of the two cultivars. Soybean leaf senescence was accelerated under elevated [CO2], determined by unclear chloroplast membrane and blurred grana layer at the beginning bloom (R1) stage. The different photosynthesis response to elevated [CO2] between cultivars at the beginning seed (R5) contributed to the yield difference under elevated [CO2]. Elevated [CO2] significantly increased the yield of Zhonghuang 35 by 26% with the increased pod number of 31%, but not for Zhonghuang 13 without changes of pod number. We conclude that the occurrence of photosynthetic acclimation at the beginning seed (R5) stage for Zhonghuang 13 restricted the development of extra C sink under elevated [CO2], thereby limiting the response to elevated [CO2] for the seed yield of this cultivar.
Resumo:
Soybean, an important source of vegetable oils and proteins for humans, has undergone significant phenotypic changes during domestication and improvement. However, there is limited knowledge about genes related to these domesticated and improved traits, such as flowering time, seed development, alkaline-salt tolerance, and seed oil content (SOC). In this study, more than 106,000 single nucleotide polymorphisms (SNPs) were identified by restriction site associated DNA sequencing of 14 wild, 153 landrace, and 119 bred soybean accessions, and 198 candidate domestication regions (CDRs) were identified via multiple genetic diversity analyses. Of the 1489 candidate domestication genes (CDGs) within these CDRs, a total of 330 CDGs were related to the above four traits in the domestication, gene ontology (GO) enrichment, gene expression, and pathway analyses. Eighteen, 60, 66, and 10 of the 330 CDGs were significantly associated with the above four traits, respectively. Of 134 traitassociated CDGs, 29 overlapped with previous CDGs, 11 were consistent with candidate genes in previous trait association studies, and 66 were covered by the domesticated and improved quantitative trait loci or their adjacent regions, having six common CDGs, such as one functionally characterized gene Glyma15 g17480 (GmZTL3). Of the 68 seed size (SS) and SOC CDGs, 37 were further confirmed by gene expression analysis. In addition, eight genes were found to be related to artificial selection during modern breeding. Therefore, this study provides an integrated method for efficiently identifying CDGs and valuable information for domestication and genetic research.
Resumo:
Soybean oil can be deacidified by liquid-liquid extraction with ethanol. In the present paper, the liquid-liquid equilibria of systems composed of refined soybean oil, commercial linoleic acid, ethanol and water were investigated at 298.2 K. The experimental data set obtained from the present study (at 298.2 K) and the results of Mohsen-Nia et al. [1] (at 303.2 K) and Rodrigues et al. [2] (at 323.2 K) were correlated by applying the non-random two liquid (NRTL) model. The results of the present study indicated that the mutual solubility of the compounds decreased with an increase in the water content of the solvent and a decrease in the temperature of the solution. Among variables, the water content of the solvent had the strongest effect on the solubility of the components. The maximum deviation and average variance between the experimental and calculated compositions were 1.60% and 0.89%, indicating that the model could accurately predict the behavior of the compounds at different temperatures and degrees of hydration. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The present paper reports phase equilibrium experimental data for two systems composed by peanut oil or avocado seed oil + commercial oleic acid + ethanol + water at 298.2 K and different water contents in the solvent. The addition of water to the solvent reduces the loss of neutral oil in the alcoholic phase and improves the solvent selectivity. The experimental data were correlated by the NRTL and UNIQUAC models. The global deviations between calculated and experimental values were 0.63 % and 1.08 %, respectively, for the systems containing avocado seed oil. In the case of systems containing peanut oil those deviations were 0.65 % and 0.98 %, respectively. Such results indicate that both models were able to reproduce correctly the experimental data, although the NRTL model presented a better performance.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Informações sobre a relação entre resultados de testes de vigor conduzidos em laboratório e da emergência de plântulas em campo são fundamentais para a tomada de decisões pelos produtores de sementes. O presente trabalho teve por objetivo verificar a associação entre os resultados do teste de envelhecimento acelerado e a emergência de plântulas de soja [Glycine max (L.) Merrill] em campo, em diferentes safras agrícolas e épocas de semeadura. Assim, foram efetuadas as seguintes avaliações: determinação do grau de umidade das sementes; testes de germinação, de envelhecimento acelerado e de condutividade elétrica, bem como emergência de plântulas em campo. A estimativa mais precisa do desempenho das plântulas em campo foi verificada numa faixa de valores de envelhecimento acelerado > 90%, estimando emergência em campo superior a 80% (r² = 0,90). O teste de envelhecimento acelerado permitiu avaliar a emergência de plântulas de soja em campo. No entanto, à medida que as condições ambientais do local de semeadura foram desviando-se das mais adequadas, a eficiência decresceu.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
O uso de fontes não convencionais para fornecimento de K às plantas tem sido amplamente estudado, mas os efeitos de materiais alternativos na qualidade fisiológica das sementes não são conhecidos. Este estudo teve como objetivo avaliar a qualidade fisiológica de sementes de soja e trigo em função da aplicação fontes de potássio em uma sucessão de culturas. O delineamento experimental foi o de blocos ao acaso com quatro repetições. Os tratamentos constaram de três fontes de K (KCl, rocha alcalina e fonolito moído, com 58%, 11% e 8.42% de K2O, respectivamente) aplicados em quatro doses (0, 25, 50 e 100 kg K2O ha-1). As doses de potássio foram aplicadas na soja e seu efeito residual foi avaliado na cultura do trigo, cultivado em sucessão. Logo após a colheita, as sementes de soja e trigo foram avaliadas pelos testes de teor de água, massa de sementes, germinação, primeira contagem, condutividade elétrica, comprimento de plântulas e massa da matéria seca de plântulas. Plantas de soja adubadas com fontes alternativas para fornecimento de K produzem sementes com maior massa e menor permeabilidade de membranas comparado às com KCl; maior qualidade fisiológica de sementes de soja e massa de sementes de trigo são obtidas com maiores doses de K2O independente da fonte.