960 resultados para Sound duties.


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction between vortices, sound and combustion can lead to self-excited oscillations of such large amplitudes that structural damage is done. These occur because any small unsteadiness in the rate of combustion is a source of sound, generating pressure and velocity fluctuations. However, the velocity fluctuations perturb the flame, thereby altering the instantaneous rate of heat release. Instability is then possible because while acoustic waves perturb the combustion, the unsteady combustion generates yet more sound! Combustion oscillations can occur in afterburners and at idle in conventional aeroengine combustors. Lean premixed, prevapourized technology has tremendous potential to reduce NOx emissions, but is proving highly susceptible to self-excited oscillations. An overview of the physics of the interaction between vortices, sound and flames is presented, and illustrated by examples of instability in generic premixed ducted flames and in aeroengine combustors. The potential for both passive and active control is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sound emission from open turbulent flames is dictated by the two-point spatial correlation of rate of change of fluctuating heat release rate and this correlation has not been investigated directly in the past studies. Turbulent premixed flame data from DNS and laser diagnostics are analyzed to study this correlation function and the two-point spatial correlation of the fluctuating heat release rate. This shows that the correlation functions have simple Gaussian forms whose integral length scale is related to the laminar flame thickness and amplitude depends on the spatial distribution of the time-mean rate of heat release. These results and RANS-CFD solution of open turbulent premixed flames are post-processed to obtain the far field SPL, which agrees well with measured values. © 2010 by the American Institute of Aeronautics and Astronautics, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To further enhance the sound absorption of metal foams via combining the high sound absorption and good heat conductivity of the cellular foam metals, the use and acoustic modeling of these materials are reviewed. The predictions made by three viscous models developed by the authors for the propagation of sound through open-cell metal foams are compared with an experiment both for the metal foams and for the polymer substrates used to manufacture the foam. All models are valid in the limit of low Reynold's number which is valid for the typical cell dimensions found in metal foams provided the amplitude of the waves is below 160 dB. The first model considers the drag experienced by acoustic waves as they propagate passing rigid cylinders parallel to their axes, the second considers the propagation normal to their axes, and the third considers the propagation passing the spherical joints. All three are combined together to give a general model of the acoustic behavior of the foams. In particular, the sound absorption is found to be significant and well predicted by the combined model. In addition, a post-processing technique is described for the experiment used to extract the fundamental wave propagation characteristics of the material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Puget Sound is one of the largest and most ecologically significant estuaries in the United States, but the status and trends of many of its biological components are not well known. We analyzed a 21-year time series of data from standardized bottom trawl sampling at a single study area to provide the first assessment of population trends of Puget Sound groundfishes after the closure of bottom trawl fisheries. The expected increase in abundance was observed for only 3 of 14 species after this closure, and catch rates of most (10) of the abundant species declined through time. Many of these changes were stepwise (abrupt) rather than gradual, and many stocks exhibited changes in catch rate during the 3-year period from 1997 through 2000. No detectable change was recorded for either temperature or surface salinity over the entire sampling period. The abrupt density reductions that were observed likely do not reflect changes in demographic rates but may instead represent distributional shifts within Puget Sound.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At decadal period (10-20 years), dynamic linkage was evident between atmospheric low pressure systems over the North Pacific Ocean and circulation in a Pacific Northwest fjord (Puget Sound). As the Aleutian low pressure center shifts, storms arriving from the North Pacific Ocean deposit varying amounts of precipitation in the mountains draining into the estuarine system; in turn, the fluctuating addition of fresh water changes the density distribution near the fjord basin entrance sill, thereby constraining the fjord's vertical velocity structure. This linkage was examined using time series of 21 environmental parameters from 1899 to 1987. Covariation in the time series was evident because of the strong decadal cycles compared with long-term averages, interannual variability, and seasonal cycles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The physical sources of sound are expressed in terms of the non-radiating part of the flow. The non-radiating part of the flow can be obtained from convolution filtering, as we demonstrate numerically by using an axi-symmetric jet satisfying the Navier-Stokes equations. Based on the frequency spectrum of the source, we show that the sound sources exhibit more physical behaviour than sound sources based on acoustic analogies. To validate the sources of sound, one needs to let them radiate within the non-radiating flow field. However, our results suggest that the traditional Euler operator linearized about the time-averaged part of the flow should be sufficient to compute the sound field. © 2010 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, speed of sound in 2 phase mixture has been explored using CFD-DEM (Computational Fluid Dynamcis - Discrete Element Modelling). In this method volume averaged Navier Stokes, continuity and energy equations are solved for fluid. Particles are simulated as individual entities; their behaviour is captured by Newton's laws of motion and classical contact mechanics. Particle-fluid interaction is captured using drag laws given in literature.The speed of sound in a medium depends on physical properties. It has been found experimentally that speed of sound drops significantly in 2 phase mixture of fluidised particles because of its increased density relative to gas while maintaining its compressibility. Due to the high rate of heat transfer within 2 phase medium as given in Roy et al. (1990), it has been assumed that the fluidised gas-particle medium is isothermal.The similar phenomenon has been tried to be captured using CFD-DEM numerical simulation. The disturbance is introduced and fundamental frequency in the medium is noted to measure the speed of sound for e.g. organ pipe. It has been found that speed of sound is in agreement with the relationship given in Roy et al. (1990). Their assumption that the system is isothermal also appears to be valid.