975 resultados para Somatic Excision


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Early establishment of endophytes can play a role in pathogen suppression and improve seedling development. One route for establishment of endophytes in seedlings is transmission of bacteria from the parent plant to the seedling via the seed. In wheat seeds, it is not clear whether this transmission route exists, and the identities and location of bacteria within wheat seeds are unknown. We identified bacteria in the wheat (Triticum aestivum) cv. Hereward seed environment using embryo excision to determine the location of the bacterial load. Axenic wheat seedlings obtained with this method were subsequently used to screen a putative endophyte bacterial isolate library for endophytic competency. This absence of bacteria recovered from seeds indicated low bacterial abundance and/or the presence of inhibitors. Diversity of readily culturable bacteria in seeds was low with 8 genera identified, dominated by Erwinia and Paenibacillus. We propose that anatomical restrictions in wheat limit embryo associated vertical transmission, and that bacterial load is carried in the seed coat, crease tissue and endosperm. This finding facilitates the creation of axenic wheat plants to test competency of putative endophytes and also provides a platform for endophyte competition, plant growth, and gene expression studies without an indigenous bacterial background.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relationship between somatic cell count (SCC) in raw milk and casein fractions of 15 batches of the corresponding ultra-high-temperature (UHT) milk was examined. Raw milk was collected, pasteurised and submitted to UHT treatment. Samples of the UHT milk were taken on days 8, 30, 60, 90 and 120 of storage at room temperature and their casein fractions analysed by high performance liquid chromatography. SCC ranged from 197,000 to 800,000 cells/mL. No correlation (p>0.05) was found between SCC and K-casein concentrations in raw or UHT milks. The alpha(s2) and P-casein concentrations in raw milk were negatively correlated with SCC (p<0.05). In UHT milk, negative correlations were observed for a,1-casein (p<0.05) and beta-casein (p<0.05) on the 8th day, and for alpha S-2-casein (p<0.01) on the 60th day of storage. Results indicate that higher SSC in raw milk is associated with substantial degradation of beta-casein and alpha(s)-casein, which may lead to quality defects in UHT milk during storage. Aust. J. Dairy Technol. 63, 45-49

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although cloning of mammals has been achieved successfully, the percentage of live offspring is very low because of reduced fetal size and fewer implantation sites. Recent studies have attributed such pathological conditions to abnormal reprogramming of the donor cell used for cloning. The inability of the oocyte to fully restore the differentiated status of a somatic cell to its pluripotent and undifferentiated state is normally evidenced by aberrant DNA methylation patterns established throughout the genome during development to blastocyst. These aberrant methylation patterns are associated with abnormal expression of imprinted genes, which among other genes are essential for normal embryo development and gestation. We hypothesized that embryo loss and low implantation rates in cattle derived by somatic cell nuclear transfer (SCNT) are caused by abnormal epigenetic reprogramming of imprinted genes. To verify our hypothesis, we analyzed the parental expression and the differentially methylated domain (DMD) methylation status of the H19 gene. Using a parental-specific analysis, we confirmed for the first time that H19 biallelic expression is tightly associated with a severe demethylation of the paternal H19 DMD in SCNT embryos, suggesting that these epigenetic anomalies to the H19 locus could be directly responsible for the reduced size and low implantation rates of cloned embryos in cattle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, lipolysis, proteolysis and viscosity of ultra-high temperature (UHT) milk containing different somatic cell counts (SCC) were investigated. UHT milks were analysed on days 8, 30, 60, 90 and 120 of storage. Lipolysis as measured by free fatty acids increase, casein degradation and viscosity of UHT milk were not affected by SCC but increased during storage. A negative relationship was observed between SCC and casein as a percentage of true protein on the 120th day of storage, hence indicating that high SCC increases the proteolysis of UHT milk by the end of its shelf life.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Somatic cell nuclear transfer (SCNT) has had an enormous impact on our understanding of biology and remains a unique tool for multiplying valuable laboratory and domestic animals. However, the complexity of the procedure and its poor efficiency are factors that limit a wider application of SCNT. In this context, oocyte meiotic arrest is an important option to make SCNT more flexible and increase the number of cloned embryos produced. Herein, we show that the use of butyrolactone I in association with brain-derived neurotrophic factor (BDNF) to arrest the meiotic division for 24 h prior to in vitro maturation provides bovine (Bos indicus) oocytes capable of supporting development of blastocysts and full-term cloned calves at least as efficiently as nonarrested oocytes. Furthermore, the procedure resulted in cloned blastocysts with an 1.5- and twofold increase of POU5F1 and IFNT2 expression, respectively, which are well-known markers of embryonic viability. Mitochondrial DNA (mtDNA) copy number was diminished by prematuration in immature oocytes (718,585 +/- 34,775 vs. 595,579 +/- 31,922, respectively, control and treated groups) but was unchanged in mature oocytes (522,179 +/- 45,617 vs. 498,771 +/- 33,231) and blastocysts (816,627 +/- 40,235 vs. 765,332 +/- 51,104). To our knowledge, this is the first report of cloned offspring born to prematured oocytes, indicating that meiotic arrest could have significant implications for laboratories working with SCNT and in vitro embryo production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sampling protocols for detecting Salmonella on poultry differ among various countries. In the United States, the U.S. Department of Agriculture Food Safety and Inspection Service dictates that whole broiler carcasses should be rinsed with 400 ml of 1% buffered peptone water, whereas in the European Union 25-g samples composed of neck skin from three carcasses are evaluated. The purpose of this study was to evaluate a whole carcass rinse (WCR) and a neck skin excision (NS) procedure for Salmonella and Escherichia coli isolation from the same broiler carcass. Carcasses were obtained from three broiler processing plants. The skin around the neck area was aseptically removed and bagged separately from the carcass, and microbiological analysis was performed. The corresponding carcass was bagged and a WCR sample was evaluated. No significant difference (alpha <= 0.05) in Salmonella prevalence was found between the samples processed by the two methods, but both procedures produced many false-negative Salmonella results. Prechill, 37% (66 carcasses), 28% (50 carcasses), and 51% (91 carcasses) of the 180 carcasses examined were positive for Salmonella by WCR, NS, and both procedures combined, respectively. Postchill, 3% (5 carcasses), 7% (12 carcasses), and 10% (17 carcasses) of the 177 carcasses examined were positive for Salmonella by the WCR, NS, and combination of both procedures, respectively. Prechill, E. coli plus coliform counts were 3.0 and 2.6 log CFU/ml by the WCR and NS methods, respectively. Postchill. E. coli plus coliform counts were 1.7 and 1.4 log CFU/ml by the WCR and NS methods, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the present work was to induce somatic embryogenesis from zygotic embryos of Passiflora cincinnata Masters. Zygotic embryos formed calli on media with different concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D) and 4.5 mu M benzyladenine (BA) after 30 days of in vitro culture. A concentration of 18.1 mu M 2,4-D resulted in the largest number of somatic embryos. Embryogenic calli were yellowish and friable, forming whitish proembryogenic masses. Morphologically, embryogenic cells were small and had large nuclei and dense cytoplasm, whereas non-embryogenic cells were elongated, with small nuclei and less dense cytoplasm. Calli cultured under white light on basal Murashige and Skoog`s medium with activated charcoal produced embryos in all developmental stages. There were differences among the treatments, with some leading to the production of calli with embryos and some only to callus formation. Some abnormalities were associated with somatic embryos, including fused axes, fused cotyledons and polycotyledonary embryos. Production of secondary somatic embryos occurred in the first cycle of primary embryo development. Secondary embryos differentiated from the surface of the protodermal layer of primary embryos with intense cell proliferation, successive mitotic divisions in the initial phase of embryoid development, and a vascular system formed with no connection to the parental tissue. This secondary embryogenic system of P. cincinnata is characterized by intense proliferation and maintenance of embryogenic competence after successive subcultures. This reproducible protocol opens new prospects for massive propagation and is an alternative to the current organogenesis-based transformation protocol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Comparative analysis of zygotic and somatic embryogenesis of Acca sellowiana showed higher amounts of sucrose, fructose, raffinose, and myo-inositol in zygotic embryos at different developmental stages than in corresponding somatic ones. These differences were mostly constant. In general, glucose levels were significantly lower than the other soluble carbohydrates analyzed, showing minor variation in each embryo stage. Despite the presence of sucrose in the culture medium, its levels conspicuously diminished in somatic embryos compared with the zygotic ones. Raffinose enhanced parallel to embryo development, regardless of its zygotic or somatic origin. Analysis of the soluble carbohydrate composition of mature zygotic cotyledon used as explant pointed out fructose, glucose, myo-inositol, sucrose, and raffinose as the most important. Similar composition was also found in the corresponding somatic cotyledon. Total soluble carbohydrates varied inversely, decreasing in zygotic embryos and increasing in somatic embryos until the 24th d, at which time they increased rapidly about sixfold in zygotic embryos until the 27th d, a period coinciding with the zygotic proembryos formation. Such condition seems to reflect directly the variation of endogenous sucrose level, mainly because glucose and fructose diminished continuously during this time period. This means that, in terms of soluble sugars, zygotic embryo formation occurred under a situation represented by high sucrose amounts, simultaneously with low fructose and glucose levels, while in contrast, somatic embryo formation took place under an endogenous sugar status characterized by a substantial fructose enhancement. Starch levels increased continuously in zygotic embryos and decreased in somatic ones, the reverse to what was found in fructose variation. Starch accumulation was significantly higher in somatic torpedo and cotyledonary embryos than in the corresponding zygotic ones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

p53 activation is one of the main signals after DNA damage, controlling cell cycle arrest, DNA repair and apoptosis. We have previously shown that confluent nucleotide excision repair (NER)-deficient cells are more resistant to apoptosis induced by ultraviolet irradiation (UV). Here, we further investigated the effect of cell confluence on UV-induced apoptosis in normal and NER-deficient (XP-A and XP-C) cells, as well as the effects of treatments with the ATWATR inhibitor caffeine, and the patterns of p53 activation. Strong p53 activation was observed in either proliferating or confluent cells. Caffeine increased apoptosis levels and inhibited p53 activation in proliferating cells, suggesting a protective role for p53. However, in confluent NER-deficient cells no effect of caffeine was observed. Transcription recovery measurements showed decreased recovery in proliferating XPA-deficient cells, but no recovery was observed in confluent cells. The levels of the cyclin/Cdk inhibitor, p21(Waf1/Cip1), correlated well with p53 activation in proliferating cells. Surprisingly, confluent cells also showed similar activation of p21(Waf1/Cip1). These results indicate that reduced apoptosis in confluent cells is associated with the deficiency in DNA damage removal, since this effect is not clearly observed in NER-proficient cells. Moreover, the strong activation of p53 in confluent cells, which barely respond to apoptosis, suggests that this protein, under these conditions, is not linked to UV-induced cell death signaling. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacteriophages are the most abundant and genetically diverse viruses on Earth, with complex ecology in both quantitative and qualitative terms. Somatic coliphages (SC) have been reported to be good indicators of fecal pollution in seawater. This study focused on determining the concentration of SC and their diversity by electron microscopy of seawater, plankton, and bivalve samples collected at three coastal regions in Sao Paulo, Brazil. The SC counts varied from < 1 to 3.4 x 103 PFU/100 ml in seawater (73 samples tested), from < 1 to 4.7 x 10(2) PFU/g in plankton (46 samples tested), and from < 1 to 2.2 x 10(1) PFU/g in bivalves (11 samples tested). In seawater samples, a relationship between the thermotolerant coliforms and Escherichia coli and SC was observed at the three regions (P = 0.0001) according to the anthropogenic activities present at each region. However, SC were found in plankton samples from three regions: Baixada Santista (17/20), Canal de Sao Sebastiao (6/14), and Ubatuba (3/12). In seawater samples collected from Baixada Santista, four morphotypes were observed: A1 (4.5%), B1 (50%), C1 (36.4%), and D1 (9.1%). One coliphage, Siphoviridae type T1, had the longest tail: between 939 and 995 nm. In plankton samples, Siphoviridae (65.8%), Podoviridae (15.8%), Microviridae (15.8%), and Myoviridae (2.6%) were found. In bivalves, only the morphotype B1 was observed. These SC were associated with enteric hosts: enterobacteria, E. coli, Proteus, Salmonella, and Yersinia. Baixada Santista is an area containing a high level of fecal pollution compared to those in the Canal de Sao Sebastiao and Ubatuba. This is the first report of coliphage diversity in seawater, plankton, and bivalve samples collected from Sao Paulo coastal regions. A better characterization of SC diversity in coastal environments will help with the management and evaluation of the microbiological risks for recreation, seafood cultivation, and consumption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxidized bases are common types of DNA modifications. Their accumulation in the genome is linked to aging and degenerative diseases. These modifications are commonly repaired by the base excision repair (BER) pathway. Oxoguanine DNA glycosylase (OGG1) initiates BER of oxidized purine bases. A small number of protein interactions have been identified for OGG1, while very few appear to have functional consequences. We report here that OGG1 interacts with the recombination protein RAD52 in vitro and in vivo. This interaction has reciprocal functional consequences as OGG1 inhibits RAD52 catalytic activities and RAD52 stimulates OGG1 incision activity, likely increasing its turnover rate. RAD52 colocalizes with OGG1 after oxidative stress to cultured cells, but not after the direct induction of double-strand breaks by ionizing radiation. Human cells depleted of RAD52 via small interfering RNA knockdown, and mouse cells lacking the protein via gene knockout showed increased sensitivity to oxidative stress. Moreover, cells depleted of RAD52 show higher accumulation of oxidized bases in their genome than cells with normal levels of RAD52. Our results indicate that RAD52 cooperates with OGG1 to repair oxidative DNA damage and enhances the cellular resistance to oxidative stress. Our observations suggest a coordinated action between these proteins that may be relevant when oxidative lesions positioned close to strand breaks impose a hindrance to RAD52 catalytic activities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxidative damage to DNA is thought to play a role in carcinogenesis by causing Mutations, and indeed accumulation of oxidized DNA bases has been observed in samples obtained from tumors but not from surrounding tissue within the same patient. Base excision repair (BER) is the main pathway for the repair of oxidized modifications both in nuclear and mitochondrial, DNA. In order to ascertain whether diminished BER capacity might account for increased levels of oxidative DNA damage in cancer cells, the activities of BER enzymes in three different lung cancer cell lines and their non-cancerous counterparts were measured using oligonucleotide substrates with single DNA lesions to assess specific BER enzymes. The activities of four BER enzymes, OGG1, NTH1, UDG and APE1, were compared in mitochondrial and nuclear extracts. For each specific lesion, the repair activities were similar among the three cell lines used. However, the specific activities and cancer versus control comparison differed significantly between the nuclear and mitochondrial compartments. OGG1 activity, as measured by 8-oxodA incision, was upregulated in cancer cell mitochondria but down-regulated in the nucleus when compared to control cells. Similarly, NTH1 activity was also up-regulated in mitochondrial extracts from cancer cells but did not change significantly in the nucleus. Together, these results support the idea that alterations in BER capacity are associated with carcinogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitochondrial transcription factor A (TFAM) is an essential component of mitochondrial nucleoids TFAM plays an important role in mitochondrial transcription and replication TFAM has been previously reported to inhibit nucleotide excision repair (NER) in vitro but NER has not yet been detected in mitochondria, whereas base excision repair (BER) has been comprehensively characterized in these organelles The BER proteins are associated with the inner membrane in mitochondria and thus with the mitochondrial nucleoid, where TFAM is also situated However, a function for TFAM in BER has not yet been investigated This study examines the role of TFAM in BER In vitro studies with purified recombinant TFAM indicate that it preferentially binds to DNA containing 8-oxoguanines, but not to abasic sites, uracils, or a gap in the sequence TFAM inhibited the in vitro incision activity of 8-oxoguanine DNA glycosylase (OGG1), uracil-DNA glycosylase (UDG), apurinic endonuclease 1 (APE1), and nucleotide incorporation by DNA polymerase gamma (pol gamma) On the other hand, a DNA binding-defective TFAM mutant, L58A, showed less inhibition of BER in vitro Characterization of TFAM knockdown (KD) cells revealed that these lysates had higher 8oxoG incision activity without changes in alpha OGG1 protein levels TFAM KD cells had mild resistance to menadione and increased damage accumulation in the mtDNA when compared to the control cells In addition, we found that the tumor suppressor p53, which has been shown to interact with and alter the DNA binding activity of TFAM, alleviates TFAM-Induced inhibition of BER proteins Together, the results suggest that TFAM modulates BER in mitochondria by virtue of its DNA binding activity and protein interactions Published by Elsevier B V

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanisms controlling the outcome of donor cell-derived mitochondrial DNA (mtDNA) in cloned animals remain largely unknown. This research was designed to investigate the kinetics of somatic and embryonic mtDNA in reconstructed bovine embryos during preimplantation development, as well as in cloned animals. The experiment involved two different procedures of embryo reconstruction and their evaluation at five distinct phases of embryo development to measure the proportion of donor cell mtDNA (Bos indicus), as well as the segregation of this mtDNA during cleavage. The ratio of donor cell (B. indicus) to host oocyte (B. taurus) mtDNA (heteroplasmy) from blastomere- (NT-B) and fibroblast- (NT-F) reconstructed embryos was estimated using an allele-specific PCR with fluorochrome-stained specific primers in each sampled blastomere, in whole blastocysts, and in the tissues of a fibroblast-derived newborn clone. NT-B zygotes and blastocysts show similar levels of heteroplasmy (11.0% and 14.0%, respectively), despite a significant decrease at the 9-16 cell stage (5.8%; p < 0.05). Heteroplasmy levels in NT-F reconstructed zygotes, however, increased from an initial low level (4.7%), to 12.9% (p < 0.05) at the 9-16 cell stage. The NT-F blastocysts contained low levels of heteroplasmy (2.2%) and no somatic-derived mtDNA was detected in the gametes or the tissues of the newborn calf cloned. These results suggest that, in contrast to the mtDNA of blastomeres, that of somatic cells either undergoes replication or escapes degradation during cleavage, although it is degraded later after the blastocyst stage or lost during somatic development, as revealed by the lack of donor cell mtDNA at birth.