986 resultados para Solid particle
Resumo:
A lattice Boltzmann method is used to model gas-solid reactions where the composition of both the gas and solid phase changes with time, while the boundary between phases remains fixed. The flow of the bulk gas phase is treated using a multiple relaxation time MRT D3Q19 model; the dilute reactant is treated as a passive scalar using a single relaxation time BGK D3Q7 model with distinct inter- and intraparticle diffusivities. A first-order reaction is incorporated by modifying the method of Sullivan et al. [13] to include the conversion of a solid reactant. The detailed computational model is able to capture the multiscale physics encountered in reactor systems. Specifically, the model reproduced steady state analytical solutions for the reaction of a porous catalyst sphere (pore scale) and empirical solutions for mass transfer to the surface of a sphere at Re=10 (particle scale). Excellent quantitative agreement between the model and experiments for the transient reduction of a single, porous sphere of Fe 2O 3 to Fe 3O 4 in CO at 1023K and 10 5Pa is demonstrated. Model solutions for the reduction of a packed bed of Fe 2O 3 (reactor scale) at identical conditions approached those of experiments after 25 s, but required prohibitively long processor times. The presented lattice Boltzmann model resolved successfully mass transport at the pore, particle and reactor scales and highlights the relevance of LB methods for modelling convection, diffusion and reaction physics. © 2012 Elsevier Inc.
Resumo:
To observe the axial growth behavior of InAs on GaAs nanowires, InAs was grown for different growth durations on GaAs nanowires using Au nanoparticles. Through transmission electron microscopy, we have observed the following evolution steps for the InAs growth. (1) In the initial stages of the InAs growth, InAs clusters into a wedge shape preferentially at an edge of the Au/GaAs interface by minimizing Au/InAs interfacial area; (2) with further growth of InAs, the Au particle moves sidewards and then downwards by preserving an interface with GaAs nanowire sidewalls. The lower interfacial energy of Au/GaAs than that of Au/In As is attributed to be the reason for such Au movement. This downward movement of the Au nanoparticle later terminates when the nanoparticle encounters InAs growing radially on the GaAs nanowire sidewalls, and with further supply of In and As vapor reactants, the Au nanoparticle assists the formation of InAs branches. These observations give some insights into vapor-liquid-solid growth and the formation of kinks in nanowire heterostructures. © 2008 Materials Research Society.
Resumo:
The boundary condition at the solid surface is one of the important problems for the microfluidics. In this paper we study the effects of the channel sizes on the boundary conditions (BC), using the hybrid computation scheme adjoining the molecular dynamics (MD) simulations and the continuum fluid mechanics. We could reproduce the three types of boundary conditions (slip, no-slip and locking) over the multiscale channel sizes. The slip lengths are found to be mainly dependent on the interfacial parameters with the fixed apparent shear rate. The channel size has little effects on the slip lengths if the size is above a critical value within a couple of tens of molecular diameters. We explore the liquid particle distributions nearest the solid walls and found that the slip boundary condition always corresponds to the uniform liquid particle distributions parallel to the solid walls, while the no-slip or locking boundary conditions correspond to the ordered liquid structures close to the solid walls. The slip, no-slip and locking interfacial parameters yield the positive, zero and negative slip lengths respectively. The three types of boundary conditions existing in "microscale" still occur in "macroscale". However, the slip lengths weakly dependent on the channel sizes yield the real shear rates and the slip velocity relative to the solid wall traveling speed approaching those with the no-slip boundary condition when the channel size is larger than thousands of liquid molecular diameters for all of the three types of interfacial parameters, leading to the quasi-no-slip boundary conditions.
Resumo:
The solid-solution-particle reinforced W(Al)-Ni composites were successfully fabricated by using mechanical alloying (MA) and hot-pressing (HP) technique when the content of Ni is between 45 wt% and 55 wt%. Besides, samples of various original component ratio of Al50W50 to Ni have been fabricated, and the corresponding microcomponents and mechanical properties such as microhardness, ultimate tensile strength and elongation were characterized and discussed. The optimum ultimate tensile strength under the experiment conditions is 1868 MPa with elongation of 10.21 % and hardness of 6.62 GPa. X-ray diffraction (XRD), FE-SEM and energy dispersive analysis of X-rays (EDS) were given to analysis the components and morphology of the composite bulk specimens.
Resumo:
The possibility of mesoporous acid solid as a carrier for metallocene catalyst in ethylene polymerization and catalyst for polyethylene (PE) catalytic degradation was investigated. Here, HMCM- 41 and AIMCM-41, and mesoporous silicoaluminophosphate molecular sieves (SAPO1 and SAPO2) were synthesized and used as acid solid. Much more gases were produced during catalytic degradation in PE/acid solid mixtures via in situ polymerization than those via physical mixing. The particle size distribution results exhibited that the particle size of SAPO1 in the PE/SAPO1 mixture via in situ polymerization was about 1/14 times of that of the original SAPO1 or SAPO1-supported metallocene catalyst. This work shows a novel technology for chemical recycling of polyolefin.
Resumo:
A series of solid electrolytes Ce1-xSmxO2-y (x=0similar to0.6) were prepared by sol-gel method. XRD measurement showed that single-phase solid solution was formed in all investigated ranges at 160 degreesC, which is a significantly lower synthesis temperature compared to traditional solid state reaction. High temperature X-ray, ESR, and Raman scattering were used to characterize the samples. ESR measurement showed that ESR with sample irradiated by high-energy particle is an effective way to study the defect structure. These changes in the Raman spectrum are attributed to O vacancies, which are introduced into the lattice when tetravalent Ce4+ is substituted by trivalent Sm3+.
Resumo:
The PVC catalyst was prepared with solid phase reaction method (Pt/C(S)) for the first time. Its performances were compared with that prepared by the traditional liquid phase reaction method. The results demonstrate that the electrocatalytic activity of PVC catalyst with solid phase reaction method for methanol oxidation is higher than that with liquid phase reaction method. XRD and TEM measurements indicate that the Pt/C(S) possesses low crystalline extent and small particle size.
Resumo:
A novel solid-state method of the preparation of zinc sulfide nanoparticles is reported. By solid-state reaction of zinc acetate and thioacetamide at low temperature, zinc sulfide nanoparticles of different sizes were prepared. The temperature of preparation varied from room temperature to 300 degrees C. The particles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), differential thermal analysis (DTA), and photoluminescence spectrum. X-ray diffraction patterns revealed that the particles exhibited pure zinc-blende crystal structure and that particle size increased with increasing temperature. The TEM micrograph showed that the mean particle size was about 40 nm for the sample heated at 100 degrees C. A blue shift was observed in the photoluminescence emission spectrum. A possible mechanism of the reaction corresponding to our observation is proposed, (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Chemical and biological processes, such as dissolution in gypsiferous sands and biodegradation in waste refuse, result in mass or particle loss, which in turn lead to changes in solid and void phase volumes and grading. Data on phase volume and grading changes have been obtained from oedometric dissolution tests on sand–salt mixtures. Phase volume changes are defined by a (dissolution-induced) void volume change parameter (Λ). Grading changes are interpreted using grading entropy coordinates, which allow a grading curve to be depicted as a single data point and changes in grading as a vector quantity rather than a family of distribution curves. By combining Λ contours with pre- to post-dissolution grading entropy coordinate paths, an innovative interpretation of the volumetric consequences of particle loss is obtained. Paths associated with small soluble particles, the loss of which triggers relatively little settlement but large increase in void ratio, track parallel to the Λ contours. Paths associated with the loss of larger particles, which can destabilise the sand skeleton, tend to track across the Λ contours.
Measurement of highly transient electrical charging following high-intensity laser-solid interaction
Resumo:
The multi-million-electron-volt proton beams accelerated during high-intensity laser-solid interactions have been used as a particle probe to investigate the electric charging of microscopic targets laser-irradiated at intensity similar to10(19) W cm(2). The charge-up, detected via the proton deflection with high temporal and spatial resolution, is due to the escape of energetic electrons generated during the interaction. The analysis of the data is supported by three- dimensional tracing of the proton trajectories. (C) 2003 American Institute of Physics.
Resumo:
The results of a study aimed at determining the most important experimental parameters for automated, quantitative analysis of solid dosage form pharmaceuticals (seized and model 'ecstasy' tablets) are reported. Data obtained with a macro-Raman spectrometer were complemented by micro-Raman measurements, which gave information on particle size and provided excellent data for developing statistical models of the sampling errors associated with collecting data as a series of grid points on the tablets' surface. Spectra recorded at single points on the surface of seized MDMA-caffeine-lactose tablets with a Raman microscope (lambda(ex) = 785 nm, 3 mum diameter spot) were typically dominated by one or other of the three components, consistent with Raman mapping data which showed the drug and caffeine microcrystals were ca 40 mum in diameter. Spectra collected with a microscope from eight points on a 200 mum grid were combined and in the resultant spectra the average value of the Raman band intensity ratio used to quantify the MDMA: caffeine ratio, mu(r), was 1.19 with an unacceptably high standard deviation, sigma(r), of 1.20. In contrast, with a conventional macro-Raman system (150 mum spot diameter), combined eight grid point data gave mu(r) = 1.47 with sigma(r) = 0.16. A simple statistical model which could be used to predict sigma(r) under the various conditions used was developed. The model showed that the decrease in sigma(r) on moving to a 150 mum spot was too large to be due entirely to the increased spot diameter but was consistent with the increased sampling volume that arose from a combination of the larger spot size and depth of focus in the macroscopic system. With the macro-Raman system, combining 64 grid points (0.5 mm spacing and 1-2 s accumulation per point) to give a single averaged spectrum for a tablet was found to be a practical balance between minimizing sampling errors and keeping overhead times at an acceptable level. The effectiveness of this sampling strategy was also tested by quantitative analysis of a set of model ecstasy tablets prepared from MDEA-sorbitol (0-30% by mass MDEA). A simple univariate calibration model of averaged 64 point data had R-2 = 0.998 and an r.m.s. standard error of prediction of 1.1% whereas data obtained by sampling just four points on the same tablet showed deviations from the calibration of up to 5%.
Resumo:
The interaction of a 3x10(19) W/cm(2) laser pulse with a metallic wire has been investigated using proton radiography. The pulse is observed to drive the propagation of a highly transient field along the wire at the speed of light. Within a temporal window of 20 ps, the current driven by this field rises to its peak magnitude similar to 10(4) A before decaying to below measurable levels. Supported by particle-in-cell simulation results and simple theoretical reasoning, the transient field measured is interpreted as a charge-neutralizing disturbance propagated away from the interaction region as a result of the permanent loss of a small fraction of the laser-accelerated hot electron population to vacuum.