992 resultados para Solder and soldering.
Resumo:
In two dimensions the simple addition of two chiral bosons of opposite chiralities does not lead to a full massless scalar field. Similarly, in three dimensions the addition of two Maxwell-Chern-Simons fields of opposite helicities +/- 1 will not produce a parity invariant Maxwell-Proca theory. An interference term between the opposite chiralities (helicities) states is required in order to obtain the expected result. The so-called soldering procedure provides the missing interference Lagrangian in both 2D and 3D cases. In two dimensions such interference term allows to fuse two chiral fermionic determinants into, a non-chiral one. In a recent work we have generalized this procedure by allowing the appearance of an extra parameter which takes two possible values and leads to two different soldered Lagrangians. Here we apply this generalized soldering in a bosonic theory which has appeared in a partial bosonization of the 3D gauged Thirring model with N flavors. The multiplicity of flavors allow new types of solderings and help us to understand the connection between different perturbative approaches to bosonization in 3D. In particular, we obtain an interference term which takes us from a multiflavor Niaxwell-Chern-Simons theory to a pair of self-dual and anti-self-dual theories when we combine together both fermionic determinants of +1/2 and -1/2 helicity fermions. An important role is played by a set of pure non-interacting Chern-Simons fields which amount to a normalization factor in the fermionic determinants and act like spectators in the original theory but play an active role in the soldering procedure. Our results suggest that the generalized soldering could be used to provide dual theories in both 2D and 3D cases. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
We start this work by revisiting the problem of the soldering of two chiral Schwinger models of opposite chiralities. We verify that, different from what one can conclude from the current literature, the usual sum of these models is, in fact, gauge invariant and corresponds to a composite model, where the component models are the vector and axial Schwinger models. As a consequence, we reinterpret this formalism as a kind of degree of freedom reduction mechanism. This result has led us to discover a second soldering possibility giving rise to the axial Schwinger model. This new result is seemingly rather general. We explore it here in the soldering of two Maxwell-Chern-Simons theories with different masses.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We have studied the theory of gauged chiral bosons and proposed a general theory, a master action, that encompasses different kinds of gauge field couplings in chiral bosonized theories with first-class chiral constraints. We have fused opposite chiral aspects of this master action using the soldering formalism and applied the final action to several well-known models. The Lorentz rotation permitted us to fix conditions on the parameters of this general theory in order to preserve the relativistic invariance. We also have established some conditions on the arbitrary parameter concerned in a chiral Schwinger model with a generalized constraint, investigating both covariance and Lorentz invariance. The results obtained supplement the one that shows the soldering formalism as a new method of mass generation. ©2001 The American Physical Society.
Resumo:
In this work we prove in a precise way that the soldering formalism can be applied to the Srivastava chiral boson (SCB), in contradiction with some results appearing in the literature. We promote a canonical transformation that shows directly that the SCB is composed of two Floreanini-Jackiw particles with the same chirality in which the spectrum is a vacuumlike one. As another conflicting result, we prove that a Wess-Zumino (WZ) term used in the literature consists of a scalar field, once again denying the assertion that the WZ term adds a new degree of freedom to the SCB theory in order to modify the physics of the system. © 2001 The American Physical Society.
Resumo:
Human health and environmental concerns are not usually considered at the same time. Tin-lead solders are still widely used in several countries, including Brazil, by manufacturers of electronic assemblies. One of the options to reduce or eliminate lead from the manufacturing environment is its replacement with lead-free alloys. This paper applies emergy synthesis and the DALY indicator (Disability Adjusted Life Years) to assess the impact of manufacturing soft solder using tin, lead and other metals on the environment and on human health. The results are presented together with the company's financial results and the results calculated from the Brazilian statistical value of life. The calculation of emergy per unit showed that more resources are used to produce one ton of lead-free solders than to produce one ton of tin-lead solders, with and without the use of consumer waste recovered through a reverse logistics system. The assessment of air emissions during solder production shows that the benefits of the lead-free solution are limited to the stages of manufacturing and assembling. The tin-lead solder appears as the best option in terms of resource use efficiency and with respect to emissions into the atmosphere when the mining stage is included. A discussion on the influence of the system's boundaries on the decision-making process for materials substitution is presented. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Introduction: Passive fit has been considered an important requirement for the longevity of implant-supported prostheses. Among the different steps of prostheses construction, casting is a feature that can influence the precision of fit and consequently the uniformity of possible deformation among abutments upon the framework connection. Purpose: This study aimed at evaluating the deformation of abutments after the connection of frameworks either cast in one piece or after soldering. Materials and Methods: A master model was used to simulate a human mandible with 5 implants. Ten frameworks were fabricated on cast models and divided into 2 groups. Strain gauges were attached to the mesial and distal sides of the abutments to capture their deformation after the framework’s screw retentions were tightened to the abutments. Results: The mean values of deformation were submitted to a 3-way analysis of variance that revealed significant differences between procedures and the abutment side. The results showed that none of the frameworks presented a complete passive fit. Conclusion: The soldering procedure led to a better although uneven distribution of compression strains on the abutments.
Resumo:
Laser tissue soldering (LTS) is a promising technique for tissue fusion but is limited by the lack of reproducibility particularly when the amount of indocyanine green (ICG) applied as energy absorber cannot be controlled during the soldering procedure. Nanotechnology enables the control over the quantitative binding of the ICG. The aim of this study was to establish a highly reproducible and strong tissue fusion using ICG packed nanoshells. By including the chromophore in the soldering scaffold, dilution of the energy absorber during the soldering procedure is prevented. The feasibility of this novel nanoshell soldering technique was studied by assessing the local heating of the area and tensile strength of the resulting fused tissue.
Resumo:
BACKGROUND: Cerebral revascularization may be indicated either for blood flow preservation or flow augmentation, often in clinical situations where neither endovascular nor standard surgical intervention can be performed. Cerebral revascularization can be performed by using a temporary occlusive or a non-occlusive technique. Both of these possibilities have their specific range of feasibility. Therefore non-occlusive revascularization techniques have been developed. To further reduce the risks for patients, less time consuming, sutureless techniques such as laser tissue soldering are currently being investigated. METHOD: In the present study, a new technique for side-to-side anastomosis was developed. Using a "sandwich technique", two vessels are kept in close contact during the laser soldering. Thoraco-abdominal aortas from 24 different rabbits were analyzed for laser irradiation induced tensile strength. Two different irradiation modes (continuous and pulsed) were used. The results were compared to conventional, noncontact laser soldering. Histology was performed using HE, Mason's Trichrome staining. FINDINGS: The achieved tensile strengths were significantly higher using the close contact "sandwich technique" as compared to the conventional adaptation technique. Furthermore, tensile strength was higher in the continuously irradiated specimen as compared to the specimen undergoing pulsed laser irradiation. The histology showed similar denaturation areas in both groups. The addition of a collagen membrane between vessel components reduced the tensile strength. CONCLUSION: These first results proved the importance of close and tight contact during the laser soldering procedure thus enabling the development of a "sandwich laser irradiation device" for in vivo application in the rabbit.
Resumo:
Introduction: Laser tissue fusion has a large potential for minimal invasive tissue fusion in different surgical specialties. We have developed a combined endovascular minimal invasive surgical technique to fuse blood vessels for bypass surgery. However, the main difficulty was to achieve reproducible results as the main tensile strength is a result of protein denaturation. We therefore aimed to develop a quantitative, reproducible tissue fusion using polycapsulated silica core nanoparticles containing indocyanine green (Si@PCL/ICG). Methods: In a first step we developed mesoporous indocyanine green (ICG) containing nanoparticles and assessed their heating profile. Furthermore the stability to light exposure and ICG degradation was measured. In a second phase Si@PCL/ICG nanoparticles for embedding into a biodegradeable implant was developed and characterized using differential scanning calomeritry technique (DSC). Results: ICG containing mesoporous silica nanoparticles showed a sufficient increase in temperature up to 80°C suitable for laser tissue fusion. However, long-term stability of ICG mesoporous nanoparticles is lost after 7 days of light exposure. In contrast Si@PCL/ICG nanoparticles demonstrated a strong heating capacity as well as a good DSC profile for laser tissue fusion and long-term stability of 3 weeks. Furthermore Si@PCL/ICG nanoparticles can be directly dispersed in spin-coated polycaprolactone polymer. Conclusion: Si@PCL/ICG nanoparticles have good long-term stability and polymer embedding properties suitable for laser tissue fusion.
Resumo:
BACKGROUND Implant-overdentures supported by rigid bars provide stability in the edentulous atrophic mandible. However, fractures of solder joints and matrices, and loosening of screws and matrices were observed with soldered gold bars (G-bars). Computer-aided designed/computer-assisted manufactured (CAD/CAM) titanium bars (Ti-bars) may reduce technical complications due to enhanced material quality. PURPOSE To compare prosthetic-technical maintenance service of mandibular implant-overdentures supported by CAD/CAM Ti-bar and soldered G-bar. MATERIALS AND METHODS Edentulous patients were consecutively admitted for implant-prosthodontic treatment with a maxillary complete denture and a mandibular implant-overdenture connected to a rigid G-bar or Ti-bar. Maintenance service and problems with the implant-retention device complex and the prosthesis were recorded during minimally 3-4 years. Annual peri-implant crestal bone level changes (ΔBIC) were radiographically assessed. RESULTS Data of 213 edentulous patients (mean age 68 ± 10 years), who had received a total of 477 tapered implants, were available. Ti-bar and G-bar comprised 101 and 112 patients with 231 and 246 implants, respectively. Ti-bar mostly exhibited distal bar extensions (96%) compared to 34% of G-bar (p < .001). Fracture rate of bars extensions (4.7% vs 14.8%, p < .001) and matrices (1% vs 13%, p < .001) was lower for Ti-bar. Matrices activation was required 2.4× less often in Ti-bar. ΔBIC remained stable for both groups. CONCLUSIONS Implant overdentures supported by soldered gold bars or milled CAD/CAM Ti-bars are a successful treatment modality but require regular maintenance service. These short-term observations support the hypothesis that CAD/CAM Ti-bars reduce technical complications. Fracture location indicated that the titanium thickness around the screw-access hole should be increased.
Resumo:
The reliability of Pb-free solder joints is controlled by their microstructural constituents. Therefore, knowledge of the solder microconstituents’ mechanical properties as a function of temperature is required. Sn-Ag-Cu lead-free solder alloy contains three phases: a Sn-rich phase, and the intermetallic compounds (IMCs) Cu6Sn5 and Ag3Sn. Typically, the Sn-rich phase is surrounded by a eutectic mixture of β-Sn, Cu6Sn5, and Ag3Sn. In this paper, we report on the Young’s modulus and hardness of the Cu6Sn5 and Cu3Sn IMCs, the β-Sn phase, and the eutectic compound, as measured by nanoindentation at elevated temperatures. For both the β-Sn phase and the eutectic compound, the hardness and Young’s modulus exhibited strong temperature dependence. In the case of the intermetallics, this temperature dependence is observed for Cu6Sn5, but the mechanical properties of Cu3Sn are more stable up to 200°C.