982 resultados para Small Interfering
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Silencing mitogen-activated protein kinase-activated protein kinase-2 arrests inflammatory bone loss
Resumo:
p38 mitogen-activated protein kinases (MAPKs) are critical for innate immune signaling and subsequent cytokine expression in periodontal inflammation and bone destruction. In fact, previous studies show that systemic p38 MAPK inhibitors block periodontal disease progression. However, development of p38 MAPK inhibitors with favorable toxicological profiles is difficult. Here, we report our findings regarding the contribution of the downstream p38 MAPK substrate, mitogen-activated protein kinase-activated protein kinase 2 (MK2 or MAPKAPK-2), in immune response modulation in an experimental model of pathogen-derived lipopolysaccharide (LPS)-induced periodontal bone loss. To determine whether small interfering RNA (siRNA) technology has intraoral applications, we initially validated MK2 siRNA specificity. Then, gingival tissue surrounding maxillary molars of rats was injected with MK2 siRNA or scrambled siRNA at the palatal regions of bone loss. Intraoral tissues treated with MK2 siRNA had significantly less MK2 mRNA expression compared with scrambled siRNA-treated tissues. MK2 siRNA delivery arrested LPS-induced inflammatory bone loss, decreased inflammatory infiltrate, and decreased osteoclastogenesis. This proof-of-concept study suggests a novel target using an intraoral RNA interference strategy to control periodontal inflammation.
Resumo:
Diabetes interferes with bone formation and impairs fracture healing, an important complication in humans and animal models. The aim of this study was to examine the impact of diabetes on mesenchymal stem cells (MSCs) during fracture repair.Fracture of the long bones was induced in a streptozotocin-induced type 1 diabetic mouse model with or without insulin or a specific TNF alpha inhibitor, pegsunercept. MSCs were detected with cluster designation-271 (also known as p75 neurotrophin receptor) or stem cell antigen-1 (Sca-1) antibodies in areas of new endochondral bone formation in the calluses. MSC apoptosis was measured by TUNEL assay and proliferation was measured by Ki67 antibody. In vitro apoptosis and proliferation were examined in C3H10T1/2 and human-bone-marrow-derived MSCs following transfection with FOXO1 small interfering (si)RNA.Diabetes significantly increased TNF alpha levels and reduced MSC numbers in new bone area. MSC numbers were restored to normal levels with insulin or pegsunercept treatment. Inhibition of TNF alpha significantly reduced MSC loss by increasing MSC proliferation and decreasing MSC apoptosis in diabetic animals, but had no effect on MSCs in normoglycaemic animals. In vitro experiments established that TNF alpha alone was sufficient to induce apoptosis and inhibit proliferation of MSCs. Furthermore, silencing forkhead box protein O1 (FOXO1) prevented TNF alpha-induced MSC apoptosis and reduced proliferation by regulating apoptotic and cell cycle genes.Diabetes-enhanced TNF alpha significantly reduced MSC numbers in new bone areas during fracture healing. Mechanistically, diabetes-enhanced TNF alpha reduced MSC proliferation and increased MSC apoptosis. Reducing the activity of TNF alpha in vivo may help to preserve endogenous MSCs and maximise regenerative potential in diabetic patients.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fructose consumption causes insulin resistance and favors hepatic gluconeogenesis through mechanisms that are not completely understood. Recent studies demonstrated that the activation of hypothalamic 5'-AMP-activated protein kinase (AMPK) controls dynamic fluctuations in hepatic glucose production. Thus, the present study was designed to investigate whether hypothalamic AMPK activation by fructose would mediate increased gluconeogenesis. Both ip and intracerebroventricular (icv) fructose treatment stimulated hypothalamic AMPK and acetyl-CoA carboxylase phosphorylation, in parallel with increased hepatic phosphoenolpyruvate carboxy kinase (PEPCK) and gluconeogenesis. An increase in AMPK phosphorylation by icv fructose was observed in the lateral hypothalamus as well as in the paraventricular nucleus and the arcuate nucleus. These effects were mimicked by icv 5-amino-imidazole-4-carboxamide-1-beta-D-ribofuranoside treatment. Hypothalamic AMPK inhibition with icv injection of compound C or with injection of a small interfering RNA targeted to AMPK alpha 2 in the mediobasal hypothalamus (MBH) suppressed the hepatic effects of ip fructose. We also found that fructose increased corticosterone levels through a mechanism that is dependent on hypothalamic AMPK activation. Concomitantly, fructose-stimulated gluconeogenesis, hepatic PEPCK expression, and glucocorticoid receptor binding to the PEPCK gene were suppressed by pharmacological glucocorticoid receptor blockage. Altogether the data presented herein support the hypothesis that fructose-induced hypothalamic AMPK activation stimulates hepatic gluconeogenesis by increasing corticosterone levels. (Endocrinology 153: 3633-3645, 2012)
Resumo:
Despite significant advances in the care of critically ill patients, acute lung injury continues to be a complex problem with high mortality. The present study was designed to characterize early lipopolysaccharide (LPS)-induced pulmonary injury and small interfering RNA targeting focal adhesion kinase (FAK) as a possible therapeutic tool in the septic lung remodeling process. Male Wistar rats were assigned into endotoxemic group and control group. Total collagen deposition was performed 8, 16, and 24 h after LPS injection. Focal adhesion kinase expression, interstitial and vascular collagen deposition, and pulmonary mechanics were analyzed at 24 h. Intravenous injection of small interfering RNA targeting FAK was used to silence expression of the kinase in pulmonary tissue. Focal adhesion kinase, total collagen deposition, and pulmonary mechanics showed increased in LPS group. Types I, III, and V collagen showed increase in pulmonary parenchyma, but only type V increased in vessels 24 h after LPS injection. Focal adhesion kinase silencing prevented lung remodeling in pulmonary parenchyma at 24 h. In conclusion, LPS induced a precocious and important lung remodeling. There was fibrotic response in the lung characterized by increased amount in total and specific-type collagen. These data may explain the frequent clinical presentation during sepsis of reduced lung compliance, oxygen diffusion, and pulmonary hypertension. The fact that FAK silencing was protective against lung collagen deposition underscores the therapeutic potential of FAK targeting by small interfering RNA.
Resumo:
RNA interference (RNAi) is a natural endogenous process by which double-stranded RNA molecules trigger potent and specific gene silencing in eukaryotic cells and is characterized by target RNA cleavage. In mammals, small interfering RNAs (siRNAs) are the trigger molecules of choice and constitute a new class of RNA-based antiviral agents. In an efficient RNAi response, the antisense strand of siRNAs must enter the RNA-induced silencing complex (RISC) in a process mediated by thermodynamic features. In this report, we hypothesize that silent mutations capable of inverting thermodynamic properties can promote resistance to siRNAs. Extensive computational analyses were used to assess whether continuous selective pressure that promotes such mutations could lead to the emergence of viral strains completely resistant to RNAi (i.e., prone to transfer only the sense strands to RISC). Based on our findings, we propose that, although synonymous mutations may produce functional resistance, this strategy cannot be systematically adopted by viruses since the longest RNAi-refractory sequence is only 10 nt long. This finding also suggests that all mRNAs display fluctuating thermodynamic landscapes and that, in terms of thermodynamic features, RNAi is a very efficient antiviral system since there will always be sites susceptible to siRNAs.
Resumo:
Pattern recognition receptors for fungi include dectin-1 and mannose receptor, and these mediate phagocytosis, as well as production of cytokines, reactive oxygen species, and the lipid mediator leukotriene B-4 (LTB4). The influence of G protein-coupled receptor ligands such as LTB4 on fungal pattern recognition receptor expression is unknown. In this study, we investigated the role of LTB4 signaling in dectin-1 expression and responsiveness in macrophages. Genetic and pharmacologic approaches showed that LTB4 production and signaling through its high-affinity G protein-coupled receptor leukotriene B4 receptor 1 (BLT1) direct dectin-1-dependent binding, ingestion, and cytokine production both in vitro and in vivo. Impaired responses to fungal glucans correlated with lower dectin-1 expression in macrophages from leukotriene (LT)- and BLT1-deficent mice than their wildtype counterparts. LTB4 increased the expression of the transcription factor responsible for dectin-1 expression, PU.1, and PU.1 small interfering RNA abolished LTB4-enhanced dectin-1 expression. GM-CSF controls PU.1 expression, and this cytokine was decreased in LT-deficient macrophages. Addition of GM-CSF to LT-deficient cells restored expression of dectin-1 and PU.1, as well as dectin-1 responsiveness. In addition, LTB4 effects on dectin-1, PU.1, and cytokine production were blunted in GM-CSF-/- macrophages. Our results identify LTB4-BLT1 signaling as an unrecognized controller of dectin-1 transcription via GM-CSF and PU.1 that is required for fungi-protective host responses. The Journal of Immunology, 2012, 189: 906-915.
Resumo:
Background: Fibroblasts are now seen as active components of the immune response because these cells express Toll-like receptors (TLRs), recognize pathogen-associated molecular patterns, and mediate the production of cytokines and chemokines during inflammation. The innate host response to lipopolysaccharide (LPS) from Porphyromonas gingivalis is unusual inasmuch as different studies have reported that it can be an agonist for Toll-like receptor 2 (TLR2) and an antagonist or agonist for Toll-like receptor 4 (TLR4). This study investigates and compares whether signaling through TLR2 or TLR4 could affect the secretion of interleukin (IL)-6, IL-8, and stromal derived factor-1 (SDF-1/CXCL12) in both human gingival fibroblasts (HGF) and human periodontal ligament fibroblasts (HPDLF). Methods: After small interfering RNA-mediated silencing of TLR2 and TLR4, HGF and HPDLF from the same donors were stimulated with P. gingivalis LPS or with two synthetic ligands of TLR2, Pam2CSK4 and Pam3CSK4, for 6 hours. IL-6, IL-8, and CXCL12 mRNA expression and protein secretion were evaluated by quantitative polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. Results: TLR2 mRNA expression was upregulated in HGF but not in HPDLF by all the stimuli applied. Knockdown of TLR2 decreased IL-6 and IL-8 in response to P. gingivalis LPS, or Pam2CSK4 and Pam3CSK4, in a similar manner in both fibroblasts subpopulations. Conversely, CXCL12 remained unchanged by TLR2 or TLR4 silencing. Conclusion: These results suggest that signaling through TLR2 by gingival and periodontal ligament fibroblasts can control the secretion of IL-6 and IL-8, which contribute to periodontal pathogenesis, but do not interfere with CXCL12 levels, an important chemokine in the repair process.
Resumo:
Previous studies have indicated that AMP-activated protein kinase (AMPK) plays a critical role in the control of cardiac hypertrophy mediated by different stimuli such as thyroid hormone (TH). Although the classical effects of TH mediating cardiac hypertrophy occur by transcriptional mechanisms, recent studies have identified other responses to TH, which are more rapid and take place in seconds or minutes evidencing that TH rapidly modulates distinct signaling pathway, which might contribute to the regulation of cardiomyocyte growth. Here, we evaluated the rapid effects of TH on AMPK signaling pathway in cultured cardiomyocytes and determined the involvement of AMPK in T3-induced cardiomyocyte growth. We found for the first time that T3 rapidly activated AMPK signaling pathway. The use of small interfering RNA against AMPK resulted in increased cardiomyocyte hypertrophy while the pharmacological stimulation of AMPK attenuated this process, demonstrating that AMPK contributes to regulation of T3-induced cardiomyocyte growth.
Resumo:
Although it is well known that the thyroid hormone (T3) is an important positive regulator of cardiac function over a short term and that it also promotes deleterious effects over a long term, the molecular mechanisms for such effects are not yet well understood. Because most alterations in cardiac function are associated with changes in sarcomeric machinery, the present work was undertaken to find novel sarcomeric hot spots driven by T3 in the heart. A microarray analysis indicated that the M-band is a major hot spot, and the structural sarcomeric gene coding for the M-protein is severely down-regulated by T3. Real-time quantitative PCR-based measurements confirmed that T3 (1, 5, 50, and 100 physiological doses for 2 days) sharply decreased the M-protein gene and protein expression in vivo in a dose-dependent manner. Furthermore, the M-protein gene expression was elevated 3.4-fold in hypothyroid rats. Accordingly, T3 was able to rapidly and strongly reduce the M-protein gene expression in neonatal cardiomyocytes. Deletions at the M-protein promoter and bioinformatics approach suggested an area responsive to T3, which was confirmed by chromatin immunoprecipitation assay. Functional assays in cultured neonatal cardiomyocytes revealed that depletion of M-protein (by small interfering RNA) drives a severe decrease in speed of contraction. Interestingly, mRNA and protein levels of other M-band components, myomesin and embryonic-heart myomesin, were not altered by T3. We concluded that the M-protein expression is strongly and rapidly repressed by T3 in cardiomyocytes, which represents an important aspect for the basis of T3-dependent sarcomeric deleterious effects in the heart.
Resumo:
Despite new methods and combined strategies, conventional cancer chemotherapy still lacks specificity and induces drug resistance. Gene therapy can offer the potential to obtain the success in the clinical treatment of cancer and this can be achieved by replacing mutated tumour suppressor genes, inhibiting gene transcription, introducing new genes encoding for therapeutic products, or specifically silencing any given target gene. Concerning gene silencing, attention has recently shifted onto the RNA interference (RNAi) phenomenon. Gene silencing mediated by RNAi machinery is based on short RNA molecules, small interfering RNAs (siRNAs) and microRNAs (miRNAs), that are fully o partially homologous to the mRNA of the genes being silenced, respectively. On one hand, synthetic siRNAs appear as an important research tool to understand the function of a gene and the prospect of using siRNAs as potent and specific inhibitors of any target gene provides a new therapeutical approach for many untreatable diseases, particularly cancer. On the other hand, the discovery of the gene regulatory pathways mediated by miRNAs, offered to the research community new important perspectives for the comprehension of the physiological and, above all, the pathological mechanisms underlying the gene regulation. Indeed, changes in miRNAs expression have been identified in several types of neoplasia and it has also been proposed that the overexpression of genes in cancer cells may be due to the disruption of a control network in which relevant miRNA are implicated. For these reasons, I focused my research on a possible link between RNAi and the enzyme cyclooxygenase-2 (COX-2) in the field of colorectal cancer (CRC), since it has been established that the transition adenoma-adenocarcinoma and the progression of CRC depend on aberrant constitutive expression of COX-2 gene. In fact, overexpressed COX-2 is involved in the block of apoptosis, the stimulation of tumor-angiogenesis and promotes cell invasion, tumour growth and metastatization. On the basis of data reported in the literature, the first aim of my research was to develop an innovative and effective tool, based on the RNAi mechanism, able to silence strongly and specifically COX-2 expression in human colorectal cancer cell lines. In this study, I firstly show that an siRNA sequence directed against COX-2 mRNA (siCOX-2), potently downregulated COX-2 gene expression in human umbilical vein endothelial cells (HUVEC) and inhibited PMA-induced angiogenesis in vitro in a specific, non-toxic manner. Moreover, I found that the insertion of a specific cassette carrying anti-COX-2 shRNA sequence (shCOX-2, the precursor of siCOX-2 previously tested) into a viral vector (pSUPER.retro) greatly increased silencing potency in a colon cancer cell line (HT-29) without activating any interferon response. Phenotypically, COX-2 deficient HT-29 cells showed a significant impairment of their in vitro malignant behaviour. Thus, results reported here indicate an easy-to-use, powerful and high selective virus-based method to knockdown COX-2 gene in a stable and long-lasting manner, in colon cancer cells. Furthermore, they open up the possibility of an in vivo application of this anti-COX-2 retroviral vector, as therapeutic agent for human cancers overexpressing COX-2. In order to improve the tumour selectivity, pSUPER.retro vector was modified for the shCOX-2 expression cassette. The aim was to obtain a strong, specific transcription of shCOX-2 followed by COX-2 silencing mediated by siCOX-2 only in cancer cells. For this reason, H1 promoter in basic pSUPER.retro vector [pS(H1)] was substituted with the human Cox-2 promoter [pS(COX2)] and with a promoter containing repeated copies of the TCF binding element (TBE) [pS(TBE)]. These promoters were choosen because they are partculary activated in colon cancer cells. COX-2 was effectively silenced in HT-29 and HCA-7 colon cancer cells by using enhanced pS(COX2) and pS(TBE) vectors. In particular, an higher siCOX-2 production followed by a stronger inhibition of Cox-2 gene were achieved by using pS(TBE) vector, that represents not only the most effective, but also the most specific system to downregulate COX-2 in colon cancer cells. Because of the many limits that a retroviral therapy could have in a possible in vivo treatment of CRC, the next goal was to render the enhanced RNAi-mediate COX-2 silencing more suitable for this kind of application. Xiang and et al. (2006) demonstrated that it is possible to induce RNAi in mammalian cells after infection with engineered E. Coli strains expressing Inv and HlyA genes, which encode for two bacterial factors needed for successful transfer of shRNA in mammalian cells. This system, called “trans-kingdom” RNAi (tkRNAi) could represent an optimal approach for the treatment of colorectal cancer, since E. Coli in normally resident in human intestinal flora and could easily vehicled to the tumor tissue. For this reason, I tested the improved COX-2 silencing mediated by pS(COX2) and pS(TBE) vectors by using tkRNAi system. Results obtained in HT-29 and HCA-7 cell lines were in high agreement with data previously collected after the transfection of pS(COX2) and pS(TBE) vectors in the same cell lines. These findings suggest that tkRNAi system for COX-2 silencing, in particular mediated by pS(TBE) vector, could represent a promising tool for the treatment of colorectal cancer. Flanking the studies addressed to the setting-up of a RNAi-mediated therapeutical strategy, I proposed to get ahead with the comprehension of new molecular basis of human colorectal cancer. In particular, it is known that components of the miRNA/RNAi pathway may be altered during the progressive development of colorectal cancer (CRC), and it has been already demonstrated that some miRNAs work as tumor suppressors or oncomiRs in colon cancer. Thus, my hypothesis was that overexpressed COX-2 protein in colon cancer could be the result of decreased levels of one or more tumor suppressor miRNAs. In this thesis, I clearly show an inverse correlation between COX-2 expression and the human miR- 101(1) levels in colon cancer cell lines, tissues and metastases. I also demonstrate that the in vitro modulating of miR-101(1) expression in colon cancer cell lines leads to significant variations in COX-2 expression, and this phenomenon is based on a direct interaction between miR-101(1) and COX-2 mRNA. Moreover, I started to investigate miR-101(1) regulation in the hypoxic environment since adaptation to hypoxia is critical for tumor cell growth and survival and it is known that COX-2 can be induced directly by hypoxia-inducible factor 1 (HIF-1). Surprisingly, I observed that COX-2 overexpression induced by hypoxia is always coupled to a significant decrease of miR-101(1) levels in colon cancer cell lines, suggesting that miR-101(1) regulation could be involved in the adaption of cancer cells to the hypoxic environment that strongly characterize CRC tissues.
Resumo:
Als BH3-only Protein gehört Bid zu den proapoptotischen Mitgliedern der Bcl-2 Familie, die während der Apoptose die Freisetzung Caspase-aktivierender Proteine aus den Mitochondrien kontrollieren. Bid zählt zu den potentesten BH3-only Proteinen und wird von vielen transformierten und nichttransformierten Zellen konstitutiv exprimiert. Ziel dieser Arbeit war es, Bid durch RNA-Interferenz stabil zu depletieren, um Bid-abhängige Apoptosewege in HeLa Zervixkarzinomzellen zu identifizieren, die von intrinsischen Stressstimuli sowie von konventionellen und neuartigen Chemotherapeutika induziert werden. Da Bid im Todesrezeptor-vermittelten Signalweg der Apoptose durch Caspase-8 gespalten und aktiviert wird, waren die Bid-depletierten Zellen signifikant vor der Fas/CD95-, TRAIL- oder TNF-α-induzierten Apoptose geschützt und zeigten nach Exposition mit allen drei Todesrezeptorliganden eine drastisch reduzierte Effektorcaspase-Aktivität und eine höhere Proliferationsrate als die Kontrollzellen. Eine ektopische Bidexpression in Bid knock down (kd) Zellen hob die Protektion vor der Fas- und TRAIL-induzierten Apoptose auf. Der Proteasominhibitor Epoxomicin, der Proteinkinase-Inhibitor Staurosporin oder die ER Stress-induzierenden Agenzien Tunicamycin, Thapsigargin und Brefeldin A lösten hingegen einen Bid-unabhängigen Zelltod aus. Allerdings konnten subletale Tunicamycin- oder Thapsigarginkonzentrationen HeLa Zellen für die TRAIL-induzierte Apoptose sensitivieren. Da der Synergieeffekt auf einer ER Stress-vermittelten Amplifizierung des Todesrezeptorwegs beruhte, zu der eine Tunicamycin-induzierte Steigerung der Expression des Todesrezeptors DR5 signifikant beitrug, erfolgte diese Sensitivierung nur in Bid-profizienten Zellen. Bid war in HeLa Zellen außerdem an der apoptotischen Signalkaskade beteiligt, die von den DNA-schädigenden Agenzien Etoposid, Doxorubicin und Oxaliplatin (Oxa) ausgelöst wird. Nach Behandlung mit Oxa zeigten die Bid kd Zellen eine verzögerte Caspase-2, -3, -8 und -9 Aktivierung, einen geringeren Verlust des mitochondrialen Membranpotentials sowie eine reduzierte Apoptose- und eine höhere Proliferationsrate als Bid-profiziente Zellen. Neben Bid war ein weiteres BH3-only Protein, Puma, an der Oxa-induzierten Effektorcaspase-Aktivierung beteiligt, da eine Puma-spezifische siRNA unabhängig vom Bidstatus der Zellen antiapoptotisch wirkte. Im letzten Teil der Arbeit wurde untersucht, welche Proteasen für die durch gentoxische Agenzien induzierte Spaltung und Aktivierung von Bid verantwortlich sind. Obwohl Caspasen für die Exekutionphase der Oxa-induzierten Apoptose notwendig waren, trugen sie weder zur initialen Bidaktivierung noch zur mitochondrialen Depolarisierung bei, da sie erst postmitochondrial aktiviert wurden. Konventionelle Calpaine hingegen wurden nach DNA-Schädigung bereits stromaufwärts der Mitochondrien aktiviert und der Calpaininhibitor Calpeptin reduzierte nicht nur die Bid- und Caspasespaltung, sondern auch die mitochondriale Depolarisierung signifikant. Diese Protektion durch Calpeptin fiel in Bid-depletierten Zellen signifikant geringer als in Bid-profizienten Kontrollzellen aus. Auch war in Oxa-behandelten Bid kd Zellen, die eine durch Caspase-2, -3 und -8 nicht spaltbare Bidmutante exprimierten, trunkiertes Bid nachweisbar, dessen Generierung durch Calpain-, aber nicht durch Caspaseinhibierung verhindert werden konnte. Zusammenfassend deuten diese Ergebnisse auf eine Calpain-abhängige Bidaktivierung stromaufwärts der Mitochondrien hin und zeigen, dass die BH3-only Proteine Bid und Puma wichtige Vermittler der Oxa-induzierten Apoptose in HeLa Zellen darstellen.
Resumo:
Unterschiedlich substituierte Reagenzien, basierend auf dem Cumarin Körper, wurden untersucht und Struktur-Funktions-Beziehungsstudien zeigten eine Selektivität für ein natürlich vorkommendes, modifiziertes Nukleosid, 4-Thiouridine (s4U). Im Verlauf dieser Experimente, fiel ein multifunktionales Cumarin, namens PBC, aus mehreren Gründen auf. Neben seiner 2000 fachen Selektivität für s4U gegenüber Uridin, besitzt PBC ein zusätzliches terminales Alkin für Konjugationsreaktionen mit Aziden. Es wurde zusätzlich zur Fluoreszenzmarkierung von small interfering RNA benutzt, deren Fluoreszenz in Zellen beobachtet werden konnte. Mit PBC kommt ein neues chemisches Reagenz zur Detektion von modifizierten Nukleosiden zum bereits vorhandenen Repertoire hinzu.rnDiese Arbeit zeigt zusätzlich eine neue Labelingstrategie, basierend auf einem kleinen, multifunktionalen chemischen Reagenz, welches spezifisch mit Uridinen in RNA reagiert. Dieses Cumarin-basierte Reagenz, namens N3BC, hat den Vorteil (I) post-transkriptionell gegenüber allen möglichen RNAs einsetzbar zu sein, (II) Fluoreszenz zu zeigen und (III) eine weitere funktionelle Gruppe zu besitzen, die in Biokonjugationsreaktionen einsetzbar ist. Die letzteren umfassen z.B. die durch UV ausgelösten crosslinking Experimente mit verwandten Proteinen, sowie die bioorthognale CuAAC Reaktion mit fluoreszenten Alkin-Farbstoffen.rnFür verlässliche Detektion wurden mehrere LC-MS/MS Methoden, zur Identifizierung und Quantifizierung von bis zu 21 Ribonukleosiden und 5 Deoxyribonukleosiden in einem Einzellauf, entwickelt. Zusätzlich wurden diese Methoden in mehreren Studien, hauptsächlich von Methyltransferasen, angewandt. rn
Resumo:
;Small interfering RNAs (siRNAs) can be exploited for the selective silencing of disease-related genes via the RNA interference (RNAi) machinery and therefore raise hope for future therapeutic applications. Especially chemically modified siRNAs are of interest as they are expected to convert lead siRNA sequences into effective drugs. To study the potential of tricyclo-DNA (tc-DNA) in this context we systematically incorporated tc-DNA units at various positions in a siRNA duplex targeted to the EGFP gene that was expressed in HeLa cells. Silencing activity was measured by FACS, mRNA levels were determined by RT-PCR and the biostability of the modifed siRNAs was determined in human serum. We found that modifications in the 3'-overhangs in both the sense and antisense strands were compatible with the RNAi machinery leading to similar activities compared to wild type (wt) siRNA. Additional modifications at the 3'-end, the 5'- end and in the center of the sense (passenger) strand were also well tolerated and did not compromise activity. Extensive modifications of the 3'- and the 5'-end in the antisense (guide) strand, however, abolished RNAi activity. Interestingly, modifications in the center of the duplex on both strands, corresponding to the position of the cleavage site by AGO2, increased efficacy relative to wt by a factor of 4 at the lowest concentrations (2 nM) investigated. In all cases, reduction of EGFP fluorescence was accompanied with a reduction of the EGFP mRNA level. Serum stability analysis further showed that 3'-overhang modifications only moderately increased stability while more extensive substitution by tc-DNA residues significantly enhanced biostability.