998 resultados para Slab laser
Resumo:
Laser surface cladding was carried out on a creep-resistant MRI 153M magnesium alloy with a mixture of Al and Al2O3 powders using a pulsed Nd:YAG laser at scan speeds of 21, 42, 63 and 84 mm/s. The Al2O3 particles partially or completely melted during laser irradiation and re-solidified with irregular shapes in the size range of 5–60 µm along with a few islands as large as 500 µm, within the grain-refined Mg-rich dendritic matrix. More than an order of magnitude improvement in wear resistance after cladding was attributed to the presence of ultra-hard Al2O3 particles, increased solid solubility of Al and other alloying elements, and a very fine dendritic microstructure as a result of rapid solidification in the cladded layer. However, corrosion resistance of the laser cladded alloy was reduced by almost an order of magnitude compared to that of the as-cast alloy mainly due to the presence of cracks and pores in the cladded layer.
Resumo:
The theory of transient mode locking for an active modulator in an intracavity frequency-doubled laser is presented. The theory is applied to mode-locked and intracavity frequency-doubled Nd:YAG laser and the mode-locked pulse width is plotted as a function of number of round trips inside the cavity. It is found that the pulse compression is faster and the system takes a very short time to approach the steady state in the presence of a second harmonic generating crystal inside the laser cavity. The effect of modulation depth and the second harmonic conversion efficiency on the temporal behavior of the pulse width is discussed. Journal of Applied Physics is copyrighted by The American Institute of Physics.
Resumo:
Polarization properties of Gaussian laser beams are analyzed in a manner consistent with the Maxwell equations, and expressions are developed for all components of the electric and magnetic field vectors in the beam. It is shown that the transverse nature of the free electromagnetic field demands a nonzero transverse cross-polarization component in addition to the well-known component of the field vectors along the beam axis. The strength of these components in relation to the strength of the principal polarization component is established. It is further shown that the integrated strengths of these components over a transverse plane are invariants of the propagation process. It is suggested that cross- polarization measurement using a null detector can serve as a new method for accurate determination of the center of Gaussian laser beams.
Resumo:
The effect of deposition of Al +Al2O3 on MRI 153 M Mg alloy processed using a pulsed Nd:YAG laser is presented in this study. A composite coating with metallurgical joint to the substrate was formed. The microstructure and phase constituents were characterized and correlated with the thermal predictions. The laser scan speed had an effect on the average melt depth and the amount of retained and/or reconstituted alumina in the final coating. The coating consisted of alumina particles and highly refined dendrites formed due to the extremely high cooling rates (of the order of 10(8) K/s). The microhardness of the coating was higher and several fold improvement of wear resistance compared to the substrate was observed for the coatings. These microstructural features and physical properties were correlated with the effects predicted by a thermal model.
Resumo:
Theoretical optimization studies of the performance of a combustion driven premixed two-phase flow gasdynamic laser are presented. The steady inviscid nonreacting quasi-one-dimensional two-phase flow model including appropriate finite rate vibrational kinetic rates has been used in the analysis. The analysis shows that the effect of the particles on the optimum performance of the two-phase laser is very small. The results are presented in graphical form. Applied Physics Letters is copyrighted by The American Institute of Physics.
Resumo:
The short duration of the Doppler signal and noise content in it necessitate a validation scheme to be incorporated in the electronic processor used for frequency measurement, There are several different validation schemes that can be employed in period timing devices. A detailed study of the influence of these validation schemes on the measured frequency has been reported here. These studies were carried out by using a combination of a fast A/D converter and computer. Doppler bursts obtained from an air flow were digitised and stored on magnetic discs. Suitable computer programs were then used to simulate the performance of period timing devices with different validation schemes and the frequency of the stored bursts were evaluated. It is found that best results are obtained when the validation scheme enables frequency measurement to be made over a large number of cycles within the burst.
Resumo:
A study of the effect of N2 reservoir temperature on the small-signal gain in a downstream-mixing 16 μm CO2-N2 GDL is presented. It is shown that the small-signal gain decreases with the increase of N2 reservoir temperature. The conditions for reversing this trend are discussed and the results are presented in the form of graphs.
Resumo:
The surface tension gradient driven flow that occurs during laser melting has been studied. The vorticity-streamfunction form of the Navier-Stokes equations and the energy equation has been solved by the ‘Alternative Direction Implicit’ method. It has been shown that the inertia forces in the melt strongly influence the flow pattern in the melt. The convection in the melt modifies the isotherms in the melt at high surface tension Reynolds number and high Prandtl number. The buoyancy driven flow has been shown to be negligible compared to the surface tension gradient driven flow in laser melting.
Resumo:
Five cyclobutanethiones with different chromophores at the 3-position were examined for triplet state behaviour in benzene using laser excitation into their low lying nπ*1 band systems. A weak transient absorption attributable to the triplet state is observed in all these cases. Results concerning triplet lifetimes, intersystem crossing yields (S1 → T1), self-quenching kinetics and kinetics of energy transfer to all-trans-1,6-diphenyl-1,3,5-hexatriene and oxygen and quenching by di-t-butyl nitroxide (DTBN) are presented. Intersystem crossing yields estimated with reference to p,p′-dimethoxythiobenzophenone are roughly unity in all five cases. Self-quenching rates are found to be less than diffusion limited and this is attributed to steric crowding at the α positions (dimethyl group). The rates of oxygen and DTBN quenching compare well with those reported for several other thiones in the literature. No transients other than the triplet were detected in the above cyclobutane-thiones.
Resumo:
The triplets of four cyclic enethiones, including thiocoumarin, have been investigated by nanosecond laser flash photolysis. Data are presented for transient spectra and kinetics associated with triplets, quantum yields of intersystem crossing and singlet oxygen photosensitization. The quenching of the thiocoumarin triplet (A:, = 485 nm, E:,, = 8.8 x lo3 dm3 mol-' cm-'in benzene) by several olefins, amines and hydrogen donors occurs with rate constants of 107-5 x lo9 dm3 mol-' s-'; the lower limits of quantum yields ( c#+~) for the related photoreactions, estimated from ground-state depletion, are generally small (0.0-0.1 1 in benzene, except for good hydrogen donors, namely, p-methoxythiophenol and tri-n-butylstannane) . The radical anion of thiocoumarin (A,,, = 405-435 nm) is formed in two stages upon triplet quenching by triethylamine in acetonitrile; the fast component is the result of direct electron transfer to the triplet and the slower component is assigned to secondary photoreduction of the thione ground state by the a-aminoalkyl radical derived from the triethylamine radical-cation.
Resumo:
The theory of transient mode locking for an active modulator in an intracavity frequency-doubled laser is presented. The theory is applied to mode-locked and intracavity frequency-doubled Nd:YAG laser and the mode-locked pulse width is plotted as a function of number of round trips inside the cavity. It is found that the pulse compression is faster and the system takes a very short time to approach the steady state in the presence of a second harmonic generating crystal inside the laser cavity. The effect of modulation depth and the second harmonic conversion efficiency on the temporal behavior of the pulse width is discussed.
Resumo:
A period timing device suitable for processing laser Doppler anemometer signals has been described here. The important features of this instrument are: it is inexpensive, simple to operate, and easy to fabricate. When the concentration of scattering particles is low the Doppler signal is in the form of a burst and the Doppler frequency is measured by timing the zero crossings of the signal. But the presence of noise calls for the use of validation criterion, and a 5–8 cycles comparison has been used in this instrument. Validation criterion requires the differential count between the 5 and 8 cycles to be multiplied by predetermined numbers that prescribe the accuracy of measurement. By choosing these numbers to be binary numbers, much simplification in circuit design has been accomplished since this permits the use of shift registers for multiplication. Validation accuracies of 1.6%, 3.2%, 6.3%, and 12.5% are possible with this device. The design presented here is for a 16-bit processor and uses TTL components. By substituting Schottky barrier TTLs the clock frequency can be increased from about 10 to 30 MHz resulting in an extension in the range of the instrument. Review of Scientific Instruments is copyrighted by The American Institute of Physics.
Resumo:
Semicarbazide hydrobromide which is isomorphous with SEM.HCl, was expected to belong to a new family of ferroelectrics. Dielectric, thermal and other studies on these crystals have yielded results which show many peculiarities but not confirmed ferroelectricity in the low temperature phase. As such a Laser Raman spectrosocopic study of oriented singe crystals of SEM.HBr was made at 298°K and at 253°K. The results have been correlated with structural features and compared with SEM.HCl.
Resumo:
In this study, a quality assessment method based on sampling of primary laser inventory units (microsegments) was analysed. The accuracy of a laser inventory carried out in Kuhmo was analysed as a case study. Field sample plots were measured on the sampled microsegments in the Kuhmo inventory area. Two main questions were considered. Did the ALS based inventory meet the accuracy requirements set for the provider and how should a reliable, cost-efficient and independent quality assessment be undertaken. The agreement between control measurement and ALS based inventory was analysed in four ways: 1) The root mean squared errors (RMSEs) and bias were calculated. 2) Scatter plots with 95% confidence intervals were plotted and the placing of identity lines was checked. 3) Bland-Altman plots were drawn so that the mean difference of attributes between the control method and ALS-method was calculated and plotted against average value of attributes. 4) The tolerance limits were defined and combined with Bland-Altman plots. The RMSE values were compared to a reference study from which the accuracy requirements had been set to the service provider. The accuracy requirements in Kuhmo were achieved, however comparison of RMSE values proved to be difficult. Field control measurements are costly and time-consuming, but they are considered to be robust. However, control measurements might include errors, which are difficult to take into account. Using the Bland-Altman plots none of the compared methods are considered to be completely exact, so this offers a fair way to interpret results of assessment. The tolerance limits to be set on order combined with Bland-Altman plots were suggested to be taken in practise. In addition, bias should be calculated for total area. Some other approaches for quality control were briefly examined. No method was found to fulfil all the required demands of statistical reliability, cost-efficiency, time efficiency, simplicity and speed of implementation. Some benefits and shortcomings of the studied methods were discussed.
Resumo:
A 16-µm CO2-N2 downstream-mixing gasdynamic laser, where a cold CO2 stream is mixed with a vibrationally excited N2 stream at the exit of the nozzle, is studied theoretically. The flow field is analyzed using a two-dimensional, unsteady, laminar and viscous flow model including appropriate finite-rate vibrational kinetic equations. The analysis showed that local small-signal gain up to 21.75 m−1 can be obtained for a N2 reservoir temperature of 2000 K and a velocity ratio of 1:1 between the CO2 and N2 mixing streams. Applied Physics Letters is copyrighted by The American Institute of Physics.