966 resultados para Single-chain variable antibody fragment
Resumo:
The multidrug resistance 1 gene (MDR1) is an important candidate gene for influencing susceptibility to hepatocellular carcinoma (HCC). The objective of the present study was to evaluate the association ofMDR1 polymorphisms with the risk of HCC in the Chinese Han population. A total of 353 HCC patients and 335 healthy subjects were enrolled in the study. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), created restriction site-PCR (CRS-PCR) and DNA sequencing methods were used to identify MDR1 gene polymorphisms. Two allelic variants (c.335T>C and c.3073A>C) were detected. The CC genotype of the c.335T>C polymorphism was associated with an increased risk of developing HCC compared to the TT genotype (OR = 2.161, 95%CI = 1.350-3.459, χ2 = 10.55, P = 0.0011). The risk of HCC was significantly higher for the CC genotype in the c.3073A>C polymorphism compared to the AA genotype in the studied populations (CCvs AA: OR = 2.575, 95%CI = 1.646-4.028, χ2 = 17.64, P < 0.0001). The C allele of the c.335T>C and c.3073A>C variants may contribute to the risk of HCC (Cvs T of c.335T>C: OR = 1.512, 95%CI = 1.208-1.893, χ2 = 13.07, P = 0.0003, and Cvs A of c.3073A>C: OR = 1.646, 95%CI = 1.322-2.049, χ2 = 20.03, P < 0.0001). The c.335T>C and c.3073A>C polymorphisms of the MDR1 gene were associated with the risk of occurrence of HCC in the Chinese Han population. Further investigations are needed to confirm these results in larger different populations.
Resumo:
Recent animal studies have indicated that overexpression of the elongation of long-chain fatty acids family member 6 (Elovl6) gene can cause insulin resistance and β-cell dysfunction. These are the major factors involved in the development of type 2 diabetes mellitus (T2DM). To identify the relationship between single nucleotide polymorphisms (SNP) ofELOVL6 and T2DM pathogenesis, we conducted a case-control study of 610 Han Chinese individuals (328 newly diagnosed T2DM and 282 healthy subjects). Insulin resistance and islet first-phase secretion function were evaluated by assessment of insulin resistance in a homeostasis model (HOMA-IR) and an arginine stimulation test. Three SNPs of the ELOVL6 gene were genotyped with polymerase chain reaction-restriction fragment length polymorphism, with DNA sequencing used to confirm the results. Only genotypes TT and CT of the ELOVL6 SNP rs12504538 were detected in the samples. Genotype CC was not observed. The T2DM group had a higher frequency of the C allele and the CT genotype than the control group. Subjects with the CT genotype had higher HOMA-IR values than those with the TT genotype. In addition, no statistical significance was observed between the genotype and allele frequencies of the control and T2DM groups for SNPs rs17041272 and rs6824447. The study indicated that the ELOVL6 gene polymorphism rs12504538 is associated with an increased risk of T2DM, because it causes an increase in insulin resistance.
Resumo:
The preparation, crystal structures and magnetic properties of two new isoelectronic and isomorphous formate-and nitrite-bridged 1D chains of Mn(III)-salen complexes, [Mn(salen)(HCOO)](n) (1) and [Mn(salen)(NO2)](n) (2), where salen is the dianion of N,N'-bis(salicylidene)-1,2-diaminoethane, are presented. The structures show that the salen ligand coordinates to the four equatorial sites of the metal ion and the formate or nitrite ions coordinate to the axial positions to bridge the Mn(III)-salen units through a syn-anti mu-1 kappa O:2 kappa O' coordination mode. Such a bridging mode is unprecedented in Mn(III) for formate and in any transition metal ion for nitrite. Variable-temperature magnetic susceptibility measurements of complexes 1 and 2 indicate the presence of ferromagnetic exchange interactions with J values of 0.0607 cm(-1) (for 1) and 0.0883 cm(-1) (for 2). The ac measurements indicate negligible frequency dependence for 1 whereas compound 2 exhibits a decrease of chi(ac)' and a concomitant increase of chi(ac)'' on elevating frequency around 2 K. This finding is an indication of slow magnetization reversal characteristic of single-chain magnets or spin-glasses. The mu-nitrito-1 kappa O:2 kappa O' bridge seems to be a potentially superior magnetic coupler to the formate bridge for the construction of single-molecule/-chain magnets as its coupling constant is greater and the chi(ac)' and chi(ac)'' show frequency dependence.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method was developed to identify and differentiate genotypes of Rhizoctonia solani anastomosis group 3 subgroup PT (AG-3 PT), a fungal pathogen of potato. Polymorphic co-dominant single-locus PCR-RFLP markers were identified after sequencing of clones from a genomic library and digestion with restriction enzymes. Multilocus genotypes were determined by a combination of PCR product and digestion with a specific restriction enzyme for each of seven loci. A sample of 104 isolates from one commercial field in each of five counties in eastern North Carolina was analyzed, and evidence for high levels of gene flow between populations was revealed. When data were clone-corrected and samples pooled into one single North Carolina population, random associations of alleles were found for all loci or pairs of loci, indicating random mating. However, when all genotypes were analyzed, the observed genotypic diversity deviated from panmixia and alleles within and between loci were not randomly associated. These findings support a model of population structure for R. solani AG-3 PT on potato that includes both recombination and clonality.
Resumo:
Caseins comprise make up about 80% of the total protein content of milk and present polymorphism with change in the amino acid sequence. Within this abundance of proteins, kappa-casein is noteworthy, since it has been associated with differences in milk yield, composition and processing. The objective of this study was to observe the existence of polymorphism in the kappa-casein gene in female buffaloes. For this purpose, blood samples from 115 female buffaloes, collected with vacutainer by needle punctionure of the jugular vein, were used. for genomic DNA extraction was done from blood samples. The PCR-RFLP and SSCP techniques demonstrated that the studied animals were monomorphic for the kappa-casein gene. Only allele B was observed in these animals, which was present in homozygosis. Therefore, it was not possible to quantify the gene action on milk yield and its constituents. The monomorphism observed in the population studied would allow the development of a method to identify mixtures of cow and buffalo milk in mozzarella cheese production, especially because, in cattle, the kappa-casein gene is polymorphic. Copyright by the Brazilian Society of Genetics.
Resumo:
Malaria is an endemic parasitosis and its causitive agent, Plasmodium, has a metabolism linked to iron supply. HFE is a gene with the polymorphisms C282Y and H63D, which are associated with a progressive iron accumulation in the organism leading to a disease called hereditary hemochromatosis. The aim of the present study was to determine the allelic and genotypic frequencies of the HFE gene polymorphisms in malaria patients and blood donors from the Brazilian Amazon region. We screened 400 blood donors and 400 malaria patients for the HFE C282Y and H63D polymorphisms from four states of the Brazilian Amazon region by polymerase chain reaction and restriction fragment length polymorphism analysis. We did not find any C282Y homozygous individuals, and the only five heterozygous individuals detected were from Pará State. The most frequent genotype in the North region of Brazil was the H63D heterozygote, in both study groups. Our results contribute to the concept that the Brazilian Amazon region should not be regarded as a single entity in South America. These polymorphisms did not influence the symptoms of malaria in the population studied, as neither severe signs nor high parasitemia were observed. Therefore, different hereditary hemochromatosis diagnostic and control measures must be developed and applied within its diverse locations. Investigations are currently being carried out in our laboratory in order to determine the importance of the coexistence of hereditary hemochromatosis in patients affected by parasitic diseases, such as malaria. ©FUNPEC-RP.
Resumo:
A PCR-RFLP analysis of the restriction pattern in nuclear (RAG2) and mitochondrial (12S/16S) gene sequences of bat species from the Molossidae, Phyllostomidae, Vespertilionidae, and Emballonuridae families produced a large number of fragments: 107 for RAG2 and 155 for 12S/16S combined in 139 and 402 haplotypes, respectively. The values detected for gene variation were low for both sequences (0.13 for RAG2 and 0.15 for 12S/16S) and reflected their conservative feature, reinforced by high values of inter- and intraspecies genetic identity (70-100%). The species with a high gene divergence were variable in the analyses of RAG2 (Eumops perotis, Artibeus lituratus, and Carollia perspicillata) and of 12S/16S (Nyctinomops laticaudatus, C. perspicillata, and Cynomops abrasus), and furthermore, one of them, C. perspicillata, also showed the highest intraspecific variation. The species that exhibited the lowest variation for both genes was Molossus rufus. In the families, the highest variation was observed in the Molossidae and this can be attributed to variation exhibited by Eumops and Nyctinomops species. The variations observed were interpreted as a natural variability within the species and genus that exhibited a conserved pattern in the two gene sequences in different species and family analyzed. Our data reinforce the idea that the analyses of mitochondrial and nuclear genes contribute to our knowledge of the diversity of New World bats. The genetic variability found in different taxa suggests that an additional diversity, unnoticed by other methods, can be revealed with the use of different molecular strategies. ©FUNPEC-RP.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Investigação de polimorfismos no gene do receptor 2 da interleucina 8 em indivíduos com periodontite
Resumo:
Pós-graduação em Odontologia - FOAR
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Herpes simplex virus 1 (HSV-1) infects oral epitelial cells, then spreads to the nerve endings and estabilishes latency in sensory ganglia, from where it may, or may not reactivate. Diseases caused by virus reactivation include mild diseases such as muco-cutaneous lesions, and more severe, and even life-threatening encephalitis, or systemic infections affecting diverse organs. Herpes simplex virus represents the most comprehensive example of virus receptor interaction in Herpesviridae family, and the prototype virus encoding multipartite entry genes. In fact, it encodes 11-12 glycoproteins and a number of additional membrane proteins: five of these proteins play key roles in virus entry into subsceptible cells. Thus, glycoprotein B (gB) and glycoprotein C (gC) interact with heparan sulfate proteoglycan to enable initial attachment to cell surfaces. In the next step, in the entry cascade, gD binds a specific surface receptor such as nectin1 or HVEM. The interaction of glycoprotein D with the receptor alters the conformation of gD to enable the activation of gB, glycoprotein H, and glycoprotein L, a trio of glycoproteins that execute the fusion of the viral envelope with the plasma membrane. In this thesis, I described two distinct projects: I. The retargeting of viral tropism for the design of oncolytic Herpesviruses: • capable of infecting cells through the human epitelial growth factor receptor 2 (HER2), overexpressed in highly malignant mammary and ovarian tumors and correlates with a poor prognosis; • detargeted from its natural receptors, HVEM and nectin1. To this end, we inserted a ligand to HER2 in gD. Because HER2 has no natural ligand, the selected ligand was a single chain antibody (scFv) derived from MAb4D5 (monoclonal antibody to HER2), herein designated scHER2. All recombinant viruses were targeted to HER2 receptor, but only two viruses (R-LM113 and R-LM249) were completely detargeted from HVEM and nectin1. To engineer R-LM113, we removed a large portion at the N-terminus of gD (from aa 6 to aa 38) and inserted scHER2 sequence plus 9-aa serine-glycine flexible linker at position 39. On the other hand, to engineer R-LM249, we replaced the Ig-folded core of gD (from aa 61 to aa 218) with scHER2 flanked by Ser-Gly linkers. In summary, these results provide evidence that: i. gD can tolerate an insert almost as big as gD itself; ii. the Ig-like domain of gD can be removed; iii. the large portion at the N-terminus of gD (from aa 6 to aa 38) can be removed without loss of key function; iv. R-LM113 and R-LM249 recombinants are ready to be assayed in animal models of mammary and ovary tumour. This finding and the avaibility of a large number of scFv greatly increase the collection of potential receptors to which HSV can be redirected. II. The production and purification of recombinant truncated form of the heterodimer gHgL. We cloned a stable insect cell line expressing a soluble form of gH in complex with gL under the control of a metalloprotein inducible promoter and purified the heterodimer by means of ONE-STrEP-tag system by IBA. With respect to biological function, the purified heterodimer is capable: • of reacting to antibodies that recognize conformation dependent epitopes and neutralize virion infectivity; • of binding a variety cells at cell surface. No doubt, the availability of biological active purified gHgL heterodimer, in sufficient quantities, will speed up the efforts to solve its crystal structure and makes it feasible to identify more clearly whether gHgL has a cellular partner, and what is the role of this interaction on virus entry.
Resumo:
Oncolytic virotherapy exploits the ability of viruses to infect and kill cells. It is suitable as treatment for tumors that are not accessible by surgery and/or respond poorly to the current therapeutic approach. HSV is a promising oncolytic agent. It has a large genome size able to accommodate large transgenes and some attenuated oncolytic HSVs (oHSV) are already in clinical trials phase I and II. The aim of this thesis was the generation of HSV-1 retargeted to tumor-specific receptors and detargeted from HSV natural receptors, HVEM and Nectin-1. The retargeting was achieved by inserting a specific single chain antibody (scFv) for the tumor receptor selected inside the HSV glycoprotein gD. In this research three tumor receptors were considered: epidermal growth factor receptor 2 (HER2) overexpressed in 25-30% of breast and ovarian cancers and gliomas, prostate specific membrane antigen (PSMA) expressed in prostate carcinomas and in neovascolature of solid tumors; and epidermal growth factor receptor variant III (EGFRvIII). In vivo studies on HER2 retargeted viruses R-LM113 and R-LM249 have demonstrated their high safety profile. For R-LM249 the antitumor efficacy has been highlighted by target-specific inhibition of the growth of human tumors in models of HER2-positive breast and ovarian cancer in nude mice. In a murine model of HER2-positive glioma in nude mice, R-LM113 was able to significantly increase the survival time of treated mice compared to control. Up to now, PSMA and EGFRvIII viruses (R-LM593 and R-LM613) are only characterized in vitro, confirming the specific retargeting to selected targets. This strategy has proved to be generally applicable to a broad spectrum of receptors for which a single chain antibody is available.
Resumo:
Multiple sclerosis (MS) is the most common autoimmune disease of the central nerve system and Guillain Barré Syndrome (GBS) is an inflammatory neuropathy involving the peripheral nerves. Anti-myelin immunoglobins may play a role in the demyelination processes of the both diseases. Sulfatide is an abundant glycolipid on myelin and is a candidate target antigen for disease related autoantibodies. The objective of this study was to characterize anti-sulfatide antibodies and compare antibodies from GBS and MS patients with fetal antibodies. Our hypothesis is that some B cells producing disease-associated autoantibodies are derived from or related to B cells of the fetal repertoire. Here we report that reactivity of plasma IgM against sulfatide was elevated in twelve MS patients compared with twelve normal subjects. This result implies that anti-sulfatide antibodies are disease-related. A total of sixteen human B lymphocyte clones producing anti-sulfatide autoantibodies were isolated from MS patients, GBS patients and a human fetus. Seven of the clones were from three MS patients, four of the clones were from three GBS patients and five were from the spleen of a twenty-week human fetus. Sequences have been obtained for the heavy and light chain variable regions (VDJ and VJ regions) of all of the anti-sulfatide immunoglobulins. Seven of the sixteen antibodies used VH3 for the variable region gene of the heavy chain consistent with the rate of VH3 usage in randomly selected B cells. Somatic mutations were significantly more frequent in the patient antibodies than in the fetus and somatic mutations in CDR's (Complementarity Determining Region) were significantly more frequent than in framework regions. No significant difference was found between patients and fetus in length of VH CDRIII. However, it is reported that antibodies from randomly selected normal adult B cells have longer CDRIII lengths than those of the fetus (Sanz I, 1991 Journal of Immunology Sep 1;147(5):1720-9). Our results are consistent with derivation of the precursors of B cells producing these autoantibodies from B cells related to those of the fetal repertoire. These findings are consistent with a model in which quiescent B cells from clones produced early in development undergo proliferation in dysregulated disease states, accumulating somatic mutations and increasing in reactivity toward self-antigens. ^ Epitope mapping and molecular modeling were done to elucidate the relationships between antibody structure and binding characteristics. The autoantibodies were tested for binding activity to three different antigens: sulfatide, galactoceramide and ceramide. Molecular modeling suggests that antibodies with positive charge surrounded by or adjacent to hydrophobic groups in the binding pocket bind to the head of sulfatide via the sulfate group through electrostatic interactions. However, the antibodies with hydrophobic groups separated from positive charges appear to bind to the hydrophobic tail of sulfatide. This observation was supported by a study of the effect of NaCl concentration on antigen binding. The result suggested that electrostatic interactions played a major role in sulfate group binding and that hydrophobic interactions were of greater importance for binding to the ceramide group. Our three-dimensional structure data indicated that epitope specificity of these antibodies is more predictable at the level of tertiary than primary structure and suggested positive selection based on structure occurred in the. formation of those autoantibodies. ^