993 resultados para Simulation results


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This chapter aims to provide an overview of building simulation in a theoretical and practical context. The following sections demonstrate the importance of simulation programs at a time when society is shifting towards a low carbon future and the practice of sustainable design becomes mandatory. The initial sections acquaint the reader with basic terminology and comment on the capabilities and categories of simulation tools before discussing the historical development of programs. The main body of the chapter considers the primary benefits and users of simulation programs, looks at the role of simulation in the construction process and examines the validity and interpretation of simulation results. The latter half of the chapter looks at program selection and discusses software capability, product characteristics, input data and output formats. The inclusion of a case study demonstrates the simulation procedure and key concepts. Finally, the chapter closes with a sight into the future, commenting on the development of simulation capability, user interfaces and how simulation will continue to empower building professionals as society faces new challenges in a rapidly changing landscape.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Simulations of polar ozone losses were performed using the three-dimensional high-resolution (1∘ × 1∘) chemical transport model MIMOSA-CHIM. Three Arctic winters 1999–2000, 2001–2002, 2002–2003 and three Antarctic winters 2001, 2002, and 2003 were considered for the study. The cumulative ozone loss in the Arctic winter 2002–2003 reached around 35% at 475 K inside the vortex, as compared to more than 60% in 1999–2000. During 1999–2000, denitrification induces a maximum of about 23% extra ozone loss at 475 K as compared to 17% in 2002–2003. Unlike these two colder Arctic winters, the 2001–2002 Arctic was warmer and did not experience much ozone loss. Sensitivity tests showed that the chosen resolution of 1∘ × 1∘ provides a better evaluation of ozone loss at the edge of the polar vortex in high solar zenith angle conditions. The simulation results for ozone, ClO, HNO3, N2O, and NO y for winters 1999–2000 and 2002–2003 were compared with measurements on board ER-2 and Geophysica aircraft respectively. Sensitivity tests showed that increasing heating rates calculated by the model by 50% and doubling the PSC (Polar Stratospheric Clouds) particle density (from 5 × 10−3 to 10−2 cm−3) refines the agreement with in situ ozone, N2O and NO y levels. In this configuration, simulated ClO levels are increased and are in better agreement with observations in January but are overestimated by about 20% in March. The use of the Burkholder et al. (1990) Cl2O2 absorption cross-sections slightly increases further ClO levels especially in high solar zenith angle conditions. Comparisons of the modelled ozone values with ozonesonde measurement in the Antarctic winter 2003 and with Polar Ozone and Aerosol Measurement III (POAM III) measurements in the Antarctic winters 2001 and 2002, shows that the simulations underestimate the ozone loss rate at the end of the ozone destruction period. A slightly better agreement is obtained with the use of Burkholder et al. (1990) Cl2O2 absorption cross-sections.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A computer simulation method has been used to study the three-dimensional structural formation and transition of eleetromagnetorheological (EMR) suspensions under compatible electric and magnetic fields. When the fields are applied simultaneously and perpendicularly to each other, the particles rapidly arrange into single layer structures parallel to both fields. In each layer, there is a two-dimensional hexagonal lattice. The single layers then combine together to form thicker sheetlike structures. With the help of the thermal fluctuations, the thicker structures relax into three-dimensional close-packed structures, which may be face-centered cubic (fcc), hexagonal close-packed (hup) lattices, or, more probably, the mixture of them, depending on the initial configurations and the thermal fluctuations. On the other hand, if the electric field is applied first to induce the body-centered tetragonal (bct) columns in the system, and then the magnetic field is applied in the perpendicular direction, the bet to fee structure transition is observed in a very short time. Following that, the structure keeps on evolving due to the demagnetization effect and finally forms close-packed structures with fee and hcp lattice character. The simulation results are in agreement with the theoretical and experimental results.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A lattice Boltzmann model able to simulate viscous fluid systems with elastic and movable boundaries is proposed. By introducing the virtual distribution function at the boundary, the Galilean invariance is recovered for the full system. As examples of application, the how in elastic vessels is simulated with the pressure-radius relationship similar to that of the pulmonary blood vessels. The numerical results for steady how are in good agreement with the analytical prediction, while the simulation results for pulsative how agree with the experimental observation of the aortic flows qualitatively. The approach has potential application in the study of the complex fluid systems such as the suspension system as well as the arterial blood flow.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The three-dimensional molecular dynamics simulation method has been used to study the dynamic responses of an electrorheological (ER) fluid in oscillatory shear. The structure and related viscoelastic behaviour of the fluid are found to be sensitive to the amplitude of the strain. With the increase of the strain amplitude, the structure formed by the particles changes from isolated columns to sheet-like structures which may be perpendicular or parallel to the oscillating direction. Along with the structure evolution, the field-induced moduli decrease significantly with an increase in strain amplitude. The viscoelastic behaviour of the structures obtained in the cases of different strain amplitudes was examined in the linear response regime and an evident structure dependence of the moduli was found. The reason for this lies in the anisotropy of the arrangement of the particles in these structures. Short-range interactions between the particles cannot be neglected in determining the viscoelastic behaviour of ER fluids at small strain amplitude, especially for parallel sheets. The simulation results were compared with available experimental data and good agreement was reached for most of them.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Langevin dynamics simulations are used to investigate the equilibrium magnetization properties and structure of magnetic dipolar fluids. The influence of using different boundary conditions are systematically studied. Simulation results on the initial susceptibility and magnetization curves are compared with theoretical predictions. The effect of particle aggregation is discussed in detail by performing a cluster analysis of the microstructure.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bergkvist insjön AB is a sawmill yard which is capable of producing 350,000 cubic meter of timber every year this requires lot of internal resources. Sawmill operations can be classified as unloading, sorting, storage and production of timber. In the company we have trucks arriving at random they have to be unloaded and sent back at the earliest to avoid queuing up of trucks creating a problem for truck owners. The sawmill yard has to operate with two log stackers that does several tasks including transporting the logs from trucks to measurement station where the logs will be sorted into classes and dropped into pockets from pockets to the sorted timber yard where they are stored and finally from there to sawmill for final processing. The main issue that needs to be answered here is the lining up trucks that are waiting to be unload, creating a problem for both sawmill as well as the truck owners and given huge production volume, it is certain that handling of resources is top priority. A key challenge in handling of resources would be unloading of trucks and finding a way to optimize internal resources.To address this problem i have experimented on different ways of using internal resources, i have designed different cases, in case 1 we have both the log stackers working on sawmill and measurement station. The main objective of having this case is to make sawmill and measurement station to work all the time. Then in case 2, i have divided the work between both the log stackers, one log stacker will be working on sawmill and pocket_control and second log stacker will be working on measurement station and truck. Then in case 3 we have only one log stacker working on all the agents, this case was designed to reduce cost of production, as the experiment cannot be done in real-time due to operational cost, for this purpose simulation is used, preliminary investigation into simulation results suggested that case 2 is the best option has it reduced waiting time of trucks considerably when compared with other cases and it showed 50% increase in optimizing internal resources.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fluidisation characteristics at different surfaces of a work-piece of complex geometry are conducted in a fluidised bed at various conditions including fluidising number, bed temperature and fluidising medium. The quenching of the work-piece is performed experimentally. In particular, the major frequency and energy of the pressure fluctuations are measured as a function of either fluidising velocity or heat transfer position and the results are used to develop a mathematic model. A computational model is developed to simulate gas dynamics and heat transfer between the fluidised bed and the work-piece surface, as well as simulating the temperature within the work-piece. The predicted cooling curves are in good agreement with the experimental results. Based on the simulation results, the flow characteristics of the gas and the temperature of the dense gas-solid phase near the work-piece surface are analysed to understand the heat transfer mechanism in the fluidised bed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ring spinning is the most important system of making high quality yarns in the textile industry. Yarn tension affects yarn breakage, which in turn affects yarn productivity in ring spinning. Accurate information about how various spinning parameters affect yarn tension is essential for the optimisation of the ring spinning process. In this paper, a program to simulate the ring spinning process was developed using MATLAB, which can predict yarn tension under given spinning conditions. The simulation results were verified with experimental results obtained from ring spinning cotton and wool yarns.


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The main aim of this work is application of the developed cellular automata (CA) model to investigate influence of the micro shear bands that are present in the heavily deformed material on the static recrystallization. This initial work is the results of recent experimental analyses indicating that the micro shear bands are preferred sites for nucleation of the recrystallization. The procedure of creation of the initial microstructure with features such as grains and micro shear bands as well as basis of the developed CA code for the static recrystallization are also presented in the paper. Finally, the simulation results obtained from different recrystallization temperatures for the microstructures with and without micro shear bands are compared with each other and differences are discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents design of an electrostatic wide band shunt capacitive coupling RF MEMS switch with low actuation voltage. The key factors of the RF MEMS switch design are the proper scattering parameters, low actuation voltage, and the cost of the fabrication process. An overview of the recent low actuation voltage RFMEMS switches has been presented. These designs still suffer from the complexity of process, lack of reliability, limitation of frequency band, and process cost. RF characteristics of a shunt RF MEMS switches are specified mostly by coupling capacitor in upstate position of the membrane Cu. This capacitor is in trade-off with actuation voltage. In this work, the capacitor is eliminated by using two short high impedance transmission lines, at the input and output of the switch. The simulation results demonstrate an improvement in the RF characteristic of the switch.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents a new architecture for a high quality tunable MEMS filter that can be used in wireless biomedical signal transceivers. It consists of a π match circuit with two shunt capacitive coupling switches separated by a piece of high impedance short transmission line, and also a series switch placed at the quarter wavelength distance away from the π match circuit. The low actuation voltage and also tunability are important features of the design objective. All portions of the filter can be realized simultaneously. Thus, the filter docs not require any extra steps during its fabrication, and is not costly. The simulation results confirm the good performance of the filter.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

RF MEMS plays an important role in microwave switching. The high performance of RF MEMS shunt such as high bandwidth, low insertion loss, and high isolation have made these switches well suitable for high performing microwave and millimeter wave circuits. This paper presents a RF MEMS shunt capacitive switch for Ka and V band application. This paper investigates the effect of various geometrical parameters on RF characteristics of the switch. The simulation results are presented and discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

It is well known that the gas–solid system plays a significant role in many industrial processes. It is a complex physical and chemical process, generally consisting of heat transfer, mass transfer, species diffusion, and chemical reactions. In this paper, the reaction of methane with air at a low air factor and the gas flow in a fluidized bed with 0.1 mm solid particles are computationally simulated to enable the study of the effect of the inert particles on the species diffusion and the chemical reactions. The reaction of methane and air is modeled by a two-step reaction mechanism that produces a continuous fluid phase composed of six gases (CH4, CO, O2, CO2, H2O, and N2) and discrete solid particles in the reactor. The simulation results are compared with experiment and show that the finite rate model and the eddy dissipation model can well describe the reactions of gases in high-density gas–solid systems. The distribution of each gas and the particle behaviors are analyzed for incomplete combustion at different concentrations of loaded solid particles. The inert particles change the reactions by enhancing both the chemical kinetics and the species diffusion dynamics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A large corpus of data obtained by means of empirical study of neuromuscular adaptation is currently of limited use to athletes and their coaches. One of the reasons lies in the unclear direct practical utility of many individual trials. This paper introduces a mathematical model of adaptation to resistance training, which derives its elements from physiological fundamentals on the one side, and empirical findings on the other. The key element of the proposed model is what is here termed the athlete’s capability profile. This is a generalization of length and velocity dependent force production characteristics of individual muscles, to an exercise with arbitrary biomechanics. The capability profile, a two-dimensional function over the capability plane, plays the central role in the proposed model of the training-adaptation feedback loop. Together with a dynamic model of resistance the capability profile is used in the model’s predictive stage when exercise performance is simulated using a numerical approximation of differential equations of motion. Simulation results are used to infer the adaptational stimulus, which manifests itself through a fed back modification of the capability profile. It is shown how empirical evidence of exercise specificity can be formulated mathematically and integrated in this framework. A detailed description of the proposed model is followed by examples of its application—new insights into the effects of accommodating loading for powerlifting are demonstrated. This is followed by a discussion of the limitations of the proposed model and an overview of avenues for future work.