953 resultados para Simulated annealing algorithms


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper the genetic algorithm of Chu and Beasley (GACB) is applied to solve the static and multistage transmission expansion planning problem. The characteristics of the GACB, and some modifications that were done, to efficiently solve the problem described above are also presented. Results using some known systems show that the GACB is very efficient. To validate the GACB, we compare the results achieved using it with the results using other meta-heuristics like tabu-search, simulated annealing, extended genetic algorithm and hibrid algorithms. © 2006 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Biometria - IBB

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Em sistemas híbridos de geração de eletricidade (SHGEs) é fundamental avaliar corretamente o dimensionamento, a operação e a gestão do sistema, de forma a evitar seu colapso prematuro e garantir a continuidade do fornecimento de energia elétrica com a menor intervenção possível de usuários ou de empresas geradoras e distribuidoras de eletricidade. O presente trabalho apresenta propostas de otimização para as etapas de dimensionamento, operação e gestão de SHGEs atendendo minirredes de distribuição de eletricidade. É proposta uma estratégia de operação que visa otimizar o despacho de energia do sistema, identificando a melhor relação, sob aspectos técnicos e econômicos, entre o atendimento da carga exclusivamente via fontes renováveis e banco de baterias ou exclusivamente via grupo gerador, e o carregamento do banco de baterias somente pelas fontes renováveis ou também pelo grupo gerador. Desenvolve-se, também, um algoritmo de dimensionamento de SHGEs, com auxílio de algoritmos genéticos e simulated annealing, técnicas meta-heurísticas de otimização, visando apresentar a melhor configuração do sistema, em termos de equipamentos que resultem na melhor viabilidade técnica e econômica para uma dada condição de entrada definida pelo usuário. Por fim, é proposto um modelo de gestão do sistema, considerando formas de tarifação e sistemas de controle de carga, cujo objetivo é garantir uma relação adequada entre a disponibilidade energética do sistema de geração e a carga demandada. A estratégia de operação proposta combina as estratégias de operação descontínua do grupo gerador, da potência crítica e do ponto otimizado de contribuição do gerador no carregamento do banco de baterias, e seus resultados indicam que há redução nos custos de operação globais do sistema. Com relação ao dimensionamento ótimo, o algoritmo proposto, em comparação a outras ferramentas de otimização de SHGEs, apresenta bons resultados, sendo adequado à realidade nacional. O modelo de gestão do sistema propõe o estabelecimento de limites de consumo e demanda, adequados à realidade de comunidades isoladas atendidas por sistemas com fontes renováveis e, se corretamente empregados, podem ajudar a garantir a sustentabilidade dos sistemas.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

O método de empilhamento por Superfície de Reflexão Comum (SRC) produz seções simuladas de afastamento nulo (AN) por meio do somatório de eventos sísmicos dos dados de cobertura múltipla contidos nas superfícies de empilhamento. Este método não depende do modelo de velocidade do meio, apenas requer o conhecimento a priori da velocidade próxima a superfície. A simulação de seções AN por este método de empilhamento utiliza uma aproximação hiperbólica de segunda ordem do tempo de trânsito de raios paraxiais para definir a superfície de empilhamento ou operador de empilhamento SRC. Para meios 2D este operador depende de três atributos cinemáticos de duas ondas hipotéticas (ondas PIN e N), observados no ponto de emergência do raio central com incidência normal, que são: o ângulo de emergência do raio central com fonte-receptor nulo (β0) , o raio de curvatura da onda ponto de incidência normal (RPIN) e o raio de curvatura da onda normal (RN). Portanto, o problema de otimização no método SRC consiste na determinação, a partir dos dados sísmicos, dos três parâmetros (β0, RPIN, RN) ótimos associados a cada ponto de amostragem da seção AN a ser simulada. A determinação simultânea destes parâmetros pode ser realizada por meio de processos de busca global (ou otimização global) multidimensional, utilizando como função objetivo algum critério de coerência. O problema de otimização no método SRC é muito importante para o bom desempenho no que diz respeito a qualidade dos resultados e principalmente ao custo computacional, comparado com os métodos tradicionalmente utilizados na indústria sísmica. Existem várias estratégias de busca para determinar estes parâmetros baseados em buscas sistemáticas e usando algoritmos de otimização, podendo estimar apenas um parâmetro de cada vez, ou dois ou os três parâmetros simultaneamente. Levando em conta a estratégia de busca por meio da aplicação de otimização global, estes três parâmetros podem ser estimados através de dois procedimentos: no primeiro caso os três parâmetros podem ser estimados simultaneamente e no segundo caso inicialmente podem ser determinados simultaneamente dois parâmetros (β0, RPIN) e posteriormente o terceiro parâmetro (RN) usando os valores dos dois parâmetros já conhecidos. Neste trabalho apresenta-se a aplicação e comparação de quatro algoritmos de otimização global para encontrar os parâmetros SRC ótimos, estes são: Simulated Annealing (SA), Very Fast Simulated Annealing (VFSA), Differential Evolution (DE) e Controlled Rando Search - 2 (CRS2). Como resultados importantes são apresentados a aplicação de cada método de otimização e a comparação entre os métodos quanto a eficácia, eficiência e confiabilidade para determinar os melhores parâmetros SRC. Posteriormente, aplicando as estratégias de busca global para a determinação destes parâmetros, por meio do método de otimização VFSA que teve o melhor desempenho foi realizado o empilhamento SRC a partir dos dados Marmousi, isto é, foi realizado um empilhamento SRC usando dois parâmetros (β0, RPIN) estimados por busca global e outro empilhamento SRC usando os três parâmetros (β0, RPIN, RN) também estimados por busca global.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper applies a genetic algorithm with hierarchically structured population to solve unconstrained optimization problems. The population has individuals distributed in several overlapping clusters, each one with a leader and a variable number of support individuals. The hierarchy establishes that leaders must be fitter than its supporters with the topological organization of the clusters following a tree. Computational tests evaluate different population structures, population sizes and crossover operators for better algorithm performance. A set of known benchmark test problems is solved and the results found are compared with those obtained from other methods described in the literature, namely, two genetic algorithms, a simulated annealing, a differential evolution and a particle swarm optimization. The results indicate that the method employed is capable of achieving better performance than the previous approaches in regard as the two criteria usually employed for comparisons: the number of function evaluations and rate of success. The method also has a superior performance if the number of problems solved is taken into account. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a mathematical model adapted from literature for the crop rotation problem with demand constraints (CRP-D). The main aim of the present work is to study metaheuristics and their performance in a real context. The proposed algorithms for solution of the CRP-D are a genetic algorithm, a simulated annealing and hybrid approaches: a genetic algorithm with simulated annealing and a genetic algorithm with local search algorithm. A new constructive heuristic was also developed to provide initial solutions for the metaheuristics. Computational experiments were performed using a real planting area and semi-randomly generated instances created by varying the number, positions and dimensions of the lots. The computational results showed that these algorithms determined good feasible solutions in a short computing time as compared with the time spent to get optimal solutions, thus proving their efficacy for dealing with this practical application of the CRP-D.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Classic group recommender systems focus on providing suggestions for a fixed group of people. Our work tries to give an inside look at design- ing a new recommender system that is capable of making suggestions for a sequence of activities, dividing people in subgroups, in order to boost over- all group satisfaction. However, this idea increases problem complexity in more dimensions and creates great challenge to the algorithm’s performance. To understand the e↵ectiveness, due to the enhanced complexity and pre- cise problem solving, we implemented an experimental system from data collected from a variety of web services concerning the city of Paris. The sys- tem recommends activities to a group of users from two di↵erent approaches: Local Search and Constraint Programming. The general results show that the number of subgroups can significantly influence the Constraint Program- ming Approaches’s computational time and e�cacy. Generally, Local Search can find results much quicker than Constraint Programming. Over a lengthy period of time, Local Search performs better than Constraint Programming, with similar final results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

It is known that the Minimum Weight Triangulation problem is NP-hard. Also the complexity of the Minimum Weight Pseudo-Triangulation problem is unknown, yet it is suspected to be also NP-hard. Therefore we focused on the development of approximate algorithms to find high quality triangulations and pseudo-triangulations of minimum weight. In this work we propose two metaheuristics to solve these problems: Ant Colony Optimization (ACO) and Simulated Annealing (SA). For the experimental study we have created a set of instances for MWT and MWPT problems, since no reference to benchmarks for these problems were found in the literature. Through experimental evaluation, we assess the applicability of the ACO and SA metaheuristics for MWT and MWPT problems. These results are compared with those obtained from the application of deterministic algorithms for the same problems (Delaunay Triangulation for MWT and a Greedy algorithm respectively for MWT and MWPT).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Los sistemas de imagen por ultrasonidos son hoy una herramienta indispensable en aplicaciones de diagnóstico en medicina y son cada vez más utilizados en aplicaciones industriales en el área de ensayos no destructivos. El array es el elemento primario de estos sistemas y su diseño determina las características de los haces que se pueden construir (forma y tamaño del lóbulo principal, de los lóbulos secundarios y de rejilla, etc.), condicionando la calidad de las imágenes que pueden conseguirse. En arrays regulares la distancia máxima entre elementos se establece en media longitud de onda para evitar la formación de artefactos. Al mismo tiempo, la resolución en la imagen de los objetos presentes en la escena aumenta con el tamaño total de la apertura, por lo que una pequeña mejora en la calidad de la imagen se traduce en un aumento significativo del número de elementos del transductor. Esto tiene, entre otras, las siguientes consecuencias: Problemas de fabricación de los arrays por la gran densidad de conexiones (téngase en cuenta que en aplicaciones típicas de imagen médica, el valor de la longitud de onda es de décimas de milímetro) Baja relación señal/ruido y, en consecuencia, bajo rango dinámico de las señales por el reducido tamaño de los elementos. Complejidad de los equipos que deben manejar un elevado número de canales independientes. Por ejemplo, se necesitarían 10.000 elementos separados λ 2 para una apertura cuadrada de 50 λ. Una forma sencilla para resolver estos problemas existen alternativas que reducen el número de elementos activos de un array pleno, sacrificando hasta cierto punto la calidad de imagen, la energía emitida, el rango dinámico, el contraste, etc. Nosotros planteamos una estrategia diferente, y es desarrollar una metodología de optimización capaz de hallar de forma sistemática configuraciones de arrays de ultrasonido adaptados a aplicaciones específicas. Para realizar dicha labor proponemos el uso de los algoritmos evolutivos para buscar y seleccionar en el espacio de configuraciones de arrays aquellas que mejor se adaptan a los requisitos fijados por cada aplicación. En la memoria se trata el problema de la codificación de las configuraciones de arrays para que puedan ser utilizados como individuos de la población sobre la que van a actuar los algoritmos evolutivos. También se aborda la definición de funciones de idoneidad que permitan realizar comparaciones entre dichas configuraciones de acuerdo con los requisitos y restricciones de cada problema de diseño. Finalmente, se propone emplear el algoritmo multiobjetivo NSGA II como herramienta primaria de optimización y, a continuación, utilizar algoritmos mono-objetivo tipo Simulated Annealing para seleccionar y retinar las soluciones proporcionadas por el NSGA II. Muchas de las funciones de idoneidad que definen las características deseadas del array a diseñar se calculan partir de uno o más patrones de radiación generados por cada solución candidata. La obtención de estos patrones con los métodos habituales de simulación de campo acústico en banda ancha requiere tiempos de cálculo muy grandes que pueden hacer inviable el proceso de optimización con algoritmos evolutivos en la práctica. Como solución, se propone un método de cálculo en banda estrecha que reduce en, al menos, un orden de magnitud el tiempo de cálculo necesario Finalmente se presentan una serie de ejemplos, con arrays lineales y bidimensionales, para validar la metodología de diseño propuesta comparando experimentalmente las características reales de los diseños construidos con las predicciones del método de optimización. ABSTRACT Currently, the ultrasound imaging system is one of the powerful tools in medical diagnostic and non-destructive testing for industrial applications. Ultrasonic arrays design determines the beam characteristics (main and secondary lobes, beam pattern, etc...) which assist to enhance the image resolution. The maximum distance between the elements of the array should be the half of the wavelength to avoid the formation of grating lobes. At the same time, the image resolution of the target in the region of interest increases with the aperture size. Consequently, the larger number of elements in arrays assures the better image quality but this improvement contains the following drawbacks: Difficulties in the arrays manufacturing due to the large connection density. Low noise to signal ratio. Complexity of the ultrasonic system to handle large number of channels. The easiest way to resolve these issues is to reduce the number of active elements in full arrays, but on the other hand the image quality, dynamic range, contrast, etc, are compromised by this solutions In this thesis, an optimization methodology able to find ultrasound array configurations adapted for specific applications is presented. The evolutionary algorithms are used to obtain the ideal arrays among the existing configurations. This work addressed problems such as: the codification of ultrasound arrays to be interpreted as individuals in the evolutionary algorithm population and the fitness function and constraints, which will assess the behaviour of individuals. Therefore, it is proposed to use the multi-objective algorithm NSGA-II as a primary optimization tool, and then use the mono-objective Simulated Annealing algorithm to select and refine the solutions provided by the NSGA I I . The acoustic field is calculated many times for each individual and in every generation for every fitness functions. An acoustic narrow band field simulator, where the number of operations is reduced, this ensures a quick calculation of the acoustic field to reduce the expensive computing time required by these functions we have employed. Finally a set of examples are presented in order to validate our proposed design methodology, using linear and bidimensional arrays where the actual characteristics of the design are compared with the predictions of the optimization methodology.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hardware/Software partitioning (HSP) is a key task for embedded system co-design. The main goal of this task is to decide which components of an application are to be executed in a general purpose processor (software) and which ones, on a specific hardware, taking into account a set of restrictions expressed by metrics. In last years, several approaches have been proposed for solving the HSP problem, directed by metaheuristic algorithms. However, due to diversity of models and metrics used, the choice of the best suited algorithm is an open problem yet. This article presents the results of applying a fuzzy approach to the HSP problem. This approach is more flexible than many others due to the fact that it is possible to accept quite good solutions or to reject other ones which do not seem good. In this work we compare six metaheuristic algorithms: Random Search, Tabu Search, Simulated Annealing, Hill Climbing, Genetic Algorithm and Evolutionary Strategy. The presented model is aimed to simultaneously minimize the hardware area and the execution time. The obtained results show that Restart Hill Climbing is the best performing algorithm in most cases.