549 resultados para Silage.
Resumo:
In common with other farmland species, hares (Lepus spp.) are in widespread decline in agricultural landscapes due to agricultural intensification and habitat loss. We examined the importance of habitat heterogeneity to the Irish hare (Lepus timidus hibernicus) in a pastoral landscape. We used radio-tracking during nocturnal active and diurnal inactive periods throughout one year. In autumn, winter and spring, hares occupied a heterogeneous combination of improved grassland, providing food, and Juncus-dominated rough pasture, providing refuge. In summer, hares significantly increased their use of improved grassland. This homogeneous habitat can fulfil the discrete and varied resource requirements of hares for feeding and shelter at certain times of year. However, improved grassland may be a risky habitat for hares as silage harvesting occurs during their peak birthing period of late spring and early summer. We therefore posit the existence of a putative ecological trap inherent to a homogeneous habitat of perceived high value that satisfies the hares' habitat requirements but which presents risks at a critical time of year. To test this hypothesis in relation to hare populations, work is required to provide data on differential leveret mortality between habitat types.
Resumo:
Previous research suggests that the digital cushion, a shock-absorbing structure in the claw, plays an important role in protecting cattle from lameness. This study aimed to assess the degree to which nutritional factors influence the composition of the digital cushion. This involved quantifying lipid content and fatty acid composition differences in digital cushion tissue from cattle offered diets with different amounts of linseed. Forty-six bulls were allocated to 1 of 4 treatments, which were applied for an average of 140 +/- 27 d during the finishing period. The treatments consisted of a linseed supplement offered once daily on top of the basal diet (grass silage:concentrate) at 0, 400, 800, or 1,200 g of supplement/animal per day. For each treatment, the concentrate offered was adjusted to ensure that total estimated ME intake was constant across treatments. Target BW at slaughter was 540 kg. Legs were collected in 3 batches after 120, 147 and 185 d on experiment. Six samples of the digital cushion were dissected from the right lateral hind claw of each animal. Lipids were extracted and expressed as a proportion of fresh tissue, and fatty acid composition of the digital cushion was determined by gas chromatography. Data were analyzed by ANOVA, with diet, location within the digital cushion, and their interactions as fixed effects and fat content (grams per 100 g of tissue) as a covariate. Linear or quadratic contrasts were examined. The lipid content of digital cushion tissue differed between sampling locations (P
Resumo:
Although interest in crossbreeding within dairy systems has increased, the role of Jersey crossbred cows within high concentrate input systems has received little attention. This experiment was designed to examine the performance of Holstein-Friesian (HF) and Jersey x Holstein-Friesian (J x HF) cows within a high concentrate input total confinement system (CON) and a medium concentrate input grazing system (GRZ). Eighty spring-calving dairy cows were used in a 2 (cow genotype) x 2 (milk production system) factorial design experiment. The experiment commenced when cows calved and encompassed a full lactation. With GRZ, cows were offered diets containing grass silage and concentrates [70:30 dry matter (DM) ratio] until turnout, grazed grass plus 1.0 kg of concentrate/day during a 199-d grazing period, and grass silage and concentrates (75:25 DM ratio) following rehousing and until drying-off. With CON, cows were confined throughout the lactation and offered diets containing grass silage and concentrates (DM ratio; 40:60, 50:50, 40:40, and 75:25 during d 1 to 100, 101 to 200, 201 to 250, and 251 until drying-off, respectively). Full-lactation concentrate DM intakes were 791 and 2,905 kg/cow for systems GRZ and CON, respectively. Although HF cows had a higher lactation milk yield than J x HF cows, the latter produced milk with a higher fat and protein content, so that solids-corrected milk yield (SCM) was unaffected by genotype. Somatic cell score was higher with the J x HF cows. Throughout lactation, HF cows were on average 37 kg heavier than J x HF cows, whereas the J x HF cows had a higher body condition score. Within each system, food intake did not differ between genotypes, whereas full-lactation yields of milk, fat plus protein, and SCM were higher with CON than with GRZ. A significant genotype x environment interaction was observed for milk yield, and a trend was found for an interaction with SCM. Crossbred cows on CON gained more body condition than HF cows, and overall pregnancy rate was unaffected by either genotype or management system. In summary, milk and SCM yields were higher with CON than with GRZ, whereas genotype had no effect on SCM. However, HF cows exhibited a greater milk yield response and a trend toward a greater SCM yield response with increasing concentrate levels compared with the crossbred cows.
Resumo:
This study has demonstrated biorefining steps for ryegrass and silage at a pilot scale to extrude fibre cake for the production of nanofibrillated cellulose (NFC), a potentially green biomaterial for replacing conventional fillers in the manufacture of polymer composites. Further treatments of processed ryegrass fibres with mechanical shearing, microfluidising, hydrochloric acid (HCl)/ sulphuric acid and a four stage {ethylenediaminetetra-acetic acid, sodium hydroxide, sodium hypochlorite and HCl} hydrolysis yielded 43.8, 36.1, 25.6 and 39.8 kg t21 DM of NFCs respectively. The NFCs were characterised using microscopy, X-ray diffraction, dynamic light scattering, spectroscopy and thermogravimetry. The NFC had diameters from 3.0–9.1 nm and length 308 nm– 4.6 mm. NFC-polyvinyl alcohol composites containing NFC (5 wt%) exhibited enhanced Young’s modulus and thermal stability by factors of 2.5 and 2 respectively compared with control. The mass, energy, water and chemical balances of the four process steps were assessed to evaluate technical feasibility and also to provide baseline production data for scaling up. The microfluidised product has been identified as the best NFC product, but production cost needs to be reduced.
Resumo:
A study was undertaken to examine a range of sample preparation and near infrared reflectance spectroscopy (NIPS) methodologies, using undried samples, for predicting organic matter digestibility (OMD g kg(-1)) and ad libitum intake (g kg(-1) W-0.75) of grass silages. A total of eight sample preparation/NIRS scanning methods were examined involving three extents of silage comminution, two liquid extracts and scanning via either external probe (1100-2200 nm) or internal cell (1100-2500 nm). The spectral data (log 1/R) for each of the eight methods were examined by three regression techniques each with a range of data transformations. The 136 silages used in the study were obtained from farms across Northern Ireland, over a two year period, and had in vivo OMD (sheep) and ad libitum intake (cattle) determined under uniform conditions. In the comparisons of the eight sample preparation/scanning methods, and the differing mathematical treatments of the spectral data, the sample population was divided into calibration (n = 91) and validation (n = 45) sets. The standard error of performance (SEP) on the validation set was used in comparisons of prediction accuracy. Across all 8 sample preparation/scanning methods, the modified partial least squares (MPLS) technique, generally minimized SEP's for both OMD and intake. The accuracy of prediction also increased with degree of comminution of the forage and with scanning by internal cell rather than external probe. The system providing the lowest SEP used the MPLS regression technique on spectra from the finely milled material scanned through the internal cell. This resulted in SEP and R-2 (variance accounted for in validation set) values of 24 (g/kg OM) and 0.88 (OMD) and 5.37 (g/kg W-0.75) and 0.77 (intake) respectively. These data indicate that with appropriate techniques NIRS scanning of undried samples of grass silage can produce predictions of intake and digestibility with accuracies similar to those achieved previously using NIRS with dried samples. (C) 1998 Elsevier Science B.V.
Resumo:
Grass biomethane has been shown to be a sustainable gaseous transport biofuel, with a good energy balance, and significant potential for economic viability. Of issue for the designer is the variation in characteristics of the grass depending on location of source, time of cut and species. Further confusion arises from the biomethane potential tests (BMP) which have a tendency to give varying results. This paper has dual ambitions. One of these is to highlight the various results for biomethane potential that may be obtained from the same grass silage. The results indicated that methane potential from the same grass silage varied from 350 to 493 L CH4 kg−1 VS added for three different BMP procedures. The second ambition is to attempt to compare two distinct digestion systems again using the same grass: a two stage continuously stirred tank reactor (CSTR); and a sequentially fed leach bed reactor connected to an upflow anaerobic sludge blanket (SLBR–UASB). The two engineered systems were designed, fabricated, commissioned and operated at small pilot scale until stable optimal operating conditions were reached. The CSTR system achieved 451 L CH4 kg−1 VS added over a 50 day retention period. The SLBR–UASB achieved 341 L CH4 kg−1 VS added at a 30 day retention time.
Resumo:
The application of slurry nutrients to land can be associated with unintended losses to the environment depending on soil and weather conditions. Correct timing of slurry application, however, can increase plant nutrient uptake and reduce losses. A decision support system (DSS), which predicts optimum conditions for slurry spreading based on the Hybrid Soil Moisture Deficit (HSMD) model, was investigated for use as a policy tool. The DSS recommendations were compared to farmer perception of suitable conditions for slurry spreading for three soil drainage classes (well, moderate and poorly drained) to better understand on farm slurry management practices and to identify potential conflict with farmer opinion. Six farmers participated in a survey over two and a half years, during which they completed a daily diary, and their responses were compared to Soil Moisture Deficit (SMD) calculations and weather data recorded by on farm meteorological stations. The perception of land drainage quality differed between farmers and was related to their local knowledge and experience. It was found that the allocation of grass fields to HSMD drainage classes using a visual assessment method aligned farmer perception of drainage at the national scale. Farmer opinion corresponded to the theoretical understanding that slurry should not be applied when the soil is wetter than field capacity, i.e. when drainage can occur. While weather and soil conditions (especially trafficability) were the principal reasons given by farmers not to spread slurry, farm management practices (grazing and silage) and current Nitrates Directive policies (closed winter period for spreading) combined with limited storage capacities were obstacles to utilisation of slurry nutrients. Despite the slightly more restrictive advice of the DSS regarding the number of suitable spreading opportunities, the system has potential to address an information deficit that would help farmers to reduce nutrient losses and optimise plant nutrient uptake by improved slurry management. The DSS advice was in general agreement with the farmers and, therefore, they should not be resistant to adopting the tool for day to day management.
Resumo:
A constructed wetland at Greenmount College, Co. Antrim, N. Ireland was built in 2004 to study the treatment of ‘dirty water’ effluent from the Greenmount dairy unit. The effluent has a mean BOD5 of c.1000 mg/L and contains milking parlour wash-water and runoff from silage clamps and yard areas lightly contaminated with cattle manure. The nominal water retention time of this wetland is 100 days. The primary purposes of the wetland are to eliminate organic pollution and eutrophication risk from nitrogen and phosphorus compounds. However the wetland should also effectively remove any zoonotic pathogens present in manure and milk. Accordingly, a 12-month microbiological survey of water in the five ponds of the wetland commenced in August 2007. The aims of the survey are to determine changes, as effluent passes through the wetland system, in a broad range of indicator organisms (faecal coliforms, Escherichia coli, Enterococcus faecalis and Clostridium perfringens) and the occurrence of several pathogens - Salmonella, Campylobacter, Cryptosporidium and Mycobacterium avium subsp. paratuberculosis (Map). The highest indicator organism counts - E. coli and faecal coliforms, 103-104 CFU/ml - are observed in pond 1, and a significant reduction (1-3 log10) in all indicator organisms occurs as water passes through the wetland from pond 1 to pond 5. Hence the wetland is efficient at reducing levels of indicator organisms in the dairy effluent. Salmonella and Campylobacter spp. are being detected intermittently in all the ponds, whilst Cryptosporidium and Map have yet to be detected, and so the ability of the wetland to reduce/eliminate specific pathogens is less clear at present.
Resumo:
The alkali activation of waste products has become a widespread topic of research, mainly due to environmental benefits. Portland cement and alkali-activated mortar samples were prepared to compare their resistance to silage effluent which contains lactic acid. The mechanism of attack on each sample has also been investigated.
Resumo:
The present study aimed at the utlisation of microbial organisms for the
production of good quality chitin and chitosan. The three strains used for the
study were Lactobacillus plantarum, Lactobacililus brevis and Bacillus subtilis.
These strains were selected on the basis of their acid producing ability to reduce
the pH of the fermenting substrates to prevent spoilage and thus caused
demineralisation of the shell. Besides, the proteolytic enzymes in these strains
acted on proteinaceous covering of shrimp and thus caused deprotenisation of
shrimp shell waste. Thus the two processes involved in chitin production can be
affected to certain extent using bacterial fermentation of shrimp shell.Optimization parameters like fermentation period, quantity of inoculum,
type of sugar, concentration of sugar etc. for fermentation with three different
strains were studied. For these, parameters like pH, Total titrable acidity (TTA),
changes in sugar concentration, changes in microbial count, sensory changes
etc. were studied.Fermentation study with Lactobacillus plantarum was continued with 20%
w/v jaggery broth for 15 days. The inoculum prepared yislded a cell
concentration of approximately 108 CFU/ml. In the present study, lactic acid and
dilute hydrochloric acid were used for initial pH adjustment because; without
adjusting the initial pH, it took more than 5 hours for the lactic acid bacteria to
convert glucose to lactic acid and during this delay spoilage occurred due to
putrefying enzymes active at neutral or higher pH. During the fermentation study,
pH first decreased in correspondence with increase in TTA values. This showed
a clear indication of acid production by the strain. This trend continued till their
proteolytic activity showed an increasing trend. When the available sugar source
started depleting, proteolytic activity also decreased and pH increased. This was
clearly reflected in the sensory evaluation results. Lactic acid treated samples
showed greater extent of demineralization and deprotenisation at the end of
fermentation study than hydrochloric acid treated samples. It can be due to the
effect of strong hydrochloric acid on the initial microbial count, which directly
affects the fermentation process. At the end of fermentation, about 76.5% of ash was removed in lactic acid treated samples and 71.8% in hydrochloric acid
treated samples; 72.8% of proteins in lactic acid treated samples and 70.6% in
hydrochloric acid treated samples.The residual protein and ash in the fermented residue were reduced to
permissible limit by treatment with 0.8N HCI and 1M NaOH. Characteristics of
chitin like chitin content, ash content, protein content, % of N- acetylation etc.
were studied. Quality characteristics like viscosity, degree of deacetylation and
molecular weight of chitosan prepared were also compared. The chitosan
samples prepared from lactic acid treated showed high viscosity than HCI treated
samples. But degree of deacetylation is more in HCI treated samples than lactic
acid treated ones. Characteristics of protein liquor obtained like its biogenic
composition, amino acid composition, total volatile base nitrogen, alpha amino
nitrogen etc. also were studied to find out its suitability as animal feed
supplement.Optimization of fermentation parameters for Lactobacillus brevis
fermentation study was also conducted and parameters were standardized. Then
detailed fermentation study was done in 20%wlv jaggery broth for 17 days. Also
the effect of two different acid treatments (mild HCI and lactic acid) used for initial
pH adjustment on chitin production were also studied. In this study also trend of
changes in pH. changes in sugar concentration ,microbial count changes were
similar to Lactobacillus plantarum studies. At the end of fermentation, residual
protein in the samples were only 32.48% in HCI treated samples and 31.85% in
lactic acid treated samples. The residual ash content was about 33.68% in HCI
treated ones and 32.52% in lactic acid treated ones. The fermented residue was
converted to chitin with good characteristics by treatment with 1.2MNaOH and
1NHCI.Characteristics of chitin samples prepared were studied and extent of Nacetylation
was about 84% in HCI treated chitin and 85%in lactic acid treated
ones assessed from FTIR spectrum. Chitosan was prepared from these samples
by usual chemical method and its extent of solubility, degree of deacetylation,
viscosity and molecular weight etc were studied. The values of viscosity and
molecular weight of the samples prepared were comparatively less than the
chitosan prepared by Lactobacillus plantarum fermentation. Characteristics of protein liquor obtained were analyzed to determine its quality and is suitability as
animal feed supplement.Another strain used for the study was Bacillus subtilis and fermentation
was carried out in 20%w/v jaggery broth for 15 days. It was found that Bacillus
subtilis was more efficient than other Lactobacillus species for deprotenisation
and demineralization. This was mainly due to the difference in the proteolytic
nature of the strains. About 84% of protein and 72% of ash were removed at the
end of fermentation. Considering the statistical significance (P
Resumo:
This study was materialized to analyze the management issues regarding the seafood processing waste generated including its impact on the coastal community in one of the important seafood hubs of India Aroor Seafood Industrial Belt Alappuzha District Kerala The area has witnessed serious pollution issues related to seafood waste and seldom has any action been implemented by either the polluters or the preventers Further this study is also intended to suggest a low cost eco friendly method for utilizing the bulk quantity of seafood solid waste generated in the area for the promotion of organic farming The high nutritional value of seafood enables the subsequent offal to be considered as an excellent source for plant nutrition The liquid silage accepted worldwide as the cheapest and practical solution for rendering fish waste in bulk for production of livestock feed is adopted in this study to develop foliar fertilizer formulations from various seafood waste The effect of seafood foliar sprays is demonstrated by field studies on two plant varieties such as Okra and Amaranthus
Resumo:
Energy production from biomass and the conservation of ecologically valuable grassland habitats are two important issues of agriculture today. The combination of a bioenergy production, which minimises environmental impacts and competition with food production for land with a conversion of semi-natural grasslands through new utilization alternatives for the biomass, led to the development of the IFBB process. Its basic principle is the separation of biomass into a liquid fraction (press fluid, PF) for the production of electric and thermal energy after anaerobic digestion to biogas and a solid fraction (press cake, PC) for the production of thermal energy through combustion. This study was undertaken to explore mass and energy flows as well as quality aspects of energy carriers within the IFBB process and determine their dependency on biomass-related and technical parameters. Two experiments were conducted, in which biomass from semi-natural grassland was conserved as silage and subjected to a hydrothermal conditioning and a subsequent mechanical dehydration with a screw press. Methane yield of the PF and the untreated silage was determined in anaerobic digestion experiments in batch fermenters at 37°C with a fermentation time of 13-15 and 27-35 days for the PF and the silage, respectively. Concentrations of dry matter (DM), ash, crude protein (CP), crude fibre (CF), ether extract (EE), neutral detergent fibre (NDF), acid detergent fibre (ADF), acid detergent ligning (ADL) and elements (K, Mg, Ca, Cl, N, S, P, C, H, N) were determined in the untreated biomass and the PC. Higher heating value (HHV) and ash softening temperature (AST) were calculated based on elemental concentration. Chemical composition of the PF and mass flows of all plant compounds into the PF were calculated. In the first experiment, biomass from five different semi-natural grassland swards (Arrhenaterion I and II, Caricion fuscae, Filipendulion ulmariae, Polygono-Trisetion) was harvested at one late sampling (19 July or 31 August) and ensiled. Each silage was subjected to three different temperature treatments (5°C, 60°C, 80°C) during hydrothermal conditioning. Based on observed methane yields and HHV as energy output parameters as well as literature-based and observed energy input parameters, energy and green house gas (GHG) balances were calculated for IFBB and two reference conversion processes, whole-crop digestion of untreated silage (WCD) and combustion of hay (CH). In the second experiment, biomass from one single semi-natural grassland sward (Arrhenaterion) was harvested at eight consecutive dates (27/04, 02/05, 09/05, 16/05, 24/05, 31/05, 11/06, 21/06) and ensiled. Each silage was subjected to six different treatments (no hydrothermal conditioning and hydrothermal conditioning at 10°C, 30°C, 50°C, 70°C, 90°C). Energy balance was calculated for IFBB and WCD. Multiple regression models were developed to predict mass flows, concentrations of elements in the PC, concentration of organic compounds in the PF and energy conversion efficiency of the IFBB process from temperature of hydrothermal conditioning as well as NDF and DM concentration in the silage. Results showed a relative reduction of ash and all elements detrimental for combustion in the PC compared to the untreated biomass of 20-90%. Reduction was highest for K and Cl and lowest for N. HHV of PC and untreated biomass were in a comparable range (17.8-19.5 MJ kg-1 DM), but AST of PC was higher (1156-1254°C). Methane yields of PF were higher compared to those of WCD when the biomass was harvested late (end of May and later) and in a comparable range when the biomass was harvested early and ranged from 332 to 458 LN kg-1 VS. Regarding energy and GHG balances, IFBB, with a net energy yield of 11.9-14.1 MWh ha-1, a conversion efficiency of 0.43-0.51, and GHG mitigation of 3.6-4.4 t CO2eq ha-1, performed better than WCD, but worse than CH. WCD produces thermal and electric energy with low efficiency, CH produces only thermal energy with a low quality solid fuel with high efficiency, IFBB produces thermal and electric energy with a solid fuel of high quality with medium efficiency. Regression models were able to predict target parameters with high accuracy (R2=0.70-0.99). The influence of increasing temperature of hydrothermal conditioning was an increase of mass flows, a decrease of element concentrations in the PC and a differing effect on energy conversion efficiency. The influence of increasing NDF concentration of the silage was a differing effect on mass flows, a decrease of element concentrations in the PC and an increase of energy conversion efficiency. The influence of increasing DM concentration of the silage was a decrease of mass flows, an increase of element concentrations in the PC and an increase of energy conversion efficiency. Based on the models an optimised IFBB process would be obtained with a medium temperature of hydrothermal conditioning (50°C), high NDF concentrations in the silage and medium DM concentrations of the silage.
Resumo:
Zusammenfassung: Ziel der Arbeit war ein Methodenvergleich zur Beurteilung der Milchqualität unterschiedlicher Herkünfte. Am Beispiel von Milchproben aus unterschiedlicher Fütterung sowie an Milchproben von enthornten bzw. horntragenden Kühen wurde geprüft, welche der angewendeten Methoden geeignet ist, die Vergleichsproben zu unterscheiden (Differenzierungsfähigkeit der Methoden) und inwieweit eine Qualitätsbeurteilung möglich ist (hinsichtlich Milchleistung, Fett-, Eiweiß-, Lactose- (=F,E,L), Harnstoff-gehalt und Zellzahl (=SCC), Säuerungseigenschaften (=SE), Fettsäuremuster (=FS-Muster), Protein- und Metabolit-Zusammensetzung (=Pr&M), Fluoreszenz-Anregungs-Spektroskopie-Eigenschaften (=FAS) und Steigbild-Merkmalen). Zusätzlich wurde vorab die Steigbildmethode (=SB-M) für das Produkt Rohmilch standardisiert und charakterisiert, um die Reproduzierbarkei der Ergebnisse sicherzustellen. Die Untersuchungen zur SB-M zeigten, dass es Faktoren gibt, die einen deutlichen Einfluß auf die Bildmerkmals-Ausprägung aufweisen. Dazu gehören laborseitig die Klimabedingungen in der Kammer, die Verdünnungsstufe der Probe, die Standzeiten der Vorverdünnung (Reaktionen mit der Luft, Alterung usw.), und tagesspezifisch auftretende Effekte, deren Ursache unbekannt ist. Probenseitig sind sehr starke tierindividuelle Effekte auf die Bildmerkmals-Ausprägung festzustellen, die unabhängig von Fütterung, Alter, Laktationsstadium und Genetik auftreten, aber auch Fütterungsbedingungen der Kühe lassen sich in der Bildmerkmals-Ausprägung wiederfinden. Die Art der Bildauswertung und die dabei berücksichtigten Bildmerkmale ist von großer Bedeutung für das Ergebnis. Die im Rahmen dieser Arbeit untersuchten 46 Probenpaare (aus den Fütterungsvergleichen (=FV) und zur Thematik der Hörner) konnten in 91% der Fälle korrekt gruppiert werden. Die Unterschiede konnten benannt werden. Drei FV wurden auf drei biologisch-dynamischen Höfen unter Praxis-Bedingungen durchgeführt (on-farm-Experimente). Es wurden jeweils zwei vergleichbare Gruppen à mindestens 11 Kühen gebildet, die im Cross-Over-Design gefüttert wurden, mit Probennahme am 14. und 21. Tag je Periode. Es wurden folgende FV untersucht: A: Wiesenheu vs. Kleegrasheu (=KG-Heu), B: Futterrüben (=FuR) vs. Weizen (Ergänzung zu Luzernegrasheu ad lib.), C: Grassilage vs. Grasheu. Bei Versuch A sind die Futtereffekte am deutlichsten, Gruppeneffekte sind gering. Die Milch der Wiesenheu-Variante hat weniger CLA’s und n3- FS und mehr mittellangkettige FS (MCT-FS), das Pr&M-Muster weist auf „Gewebereifung und Ausdifferenzierung“ vs. bei KG-Heu „Nährstoff-fülle, Wachstum und Substanz-Einlagerung und die SB zeigen fein ausdifferenzierte Bildmerkmale. Bei Versuch B sind die Futtereffekte ähnlich groß wie die Gruppeneffekte. Bei vergleichbarer Milchleistung weist die Milch der FuR-Variante höhere F- und E-Gehalte auf, sie säuert schneller und mehr, das FS-Muster weist auf eine „intensive“ Fütterung mit vermehrt MCT- FS, und die Pr&M-Untersuchungen charakterisieren sie mit „Eisentransport und Fetttröpfchenbildung“ vs. bei Weizen „mehr Abwehr-, Regulations- und Transportfunktion“ /. „mehr Lipidsynthese“. Die SB charakterisieren mit „große, kräftige Formen, verwaschen“ vs. „kleine, ausdifferenzierte Bildmerkmal“ für FuR vs. Weizen. Die FAS charakterisiert sie mit „Saftfutter-typisch“ vs. „Samentypisch“. Versuch C weist die geringsten Futtereffekt auf, und deutliche Gruppen- und Zeiteffekte. Milchleistung und F,E,L-Gehalte zeigen keinen Futtereffekt. Die Milch der Heu-Variante säuert schneller, und sie weist mehr SCT und MCT- FS auf. Pr&M-Untersuchungen wurden nicht durchgeführt. Die SB charakterisieren bei Heumilch mit „fein, zart, durchgestaltet, hell“, bei Silagemilch mit „kräftig, wäßrig-verwaschen, dunkler“. Die FAS kann keine konsistenten Unterschiede ermitteln. Der Horn-Einfluß auf die Milchprobe wurde an 34 Probenpaaren untersucht. Von 11 Höfen wurden je zwei möglichst vergleichbare Gruppen zusammengestellt, die sich nur im Faktor „Horn“ unterscheiden, und im wöchentlichen Abstand drei mal beprobt. F,E,L, SCC und SE der Proben sowie die FAS-Messungen weisen keine konsistenten signifikanten Unterschiede zwischen den Horn-Varianten auf. Pr&M weisen bei den untersuchten Proben (von zwei Höfen) auf Horneffekte hin: bei Eh eine Erhöhung von Immun-Abwehr-Funktionen, sowie einer Abnahme phosphorylierter C3- und C6-Metabolite und Beta-Lactoglobulin. Mit den SB ließen sich für die gewählten Merkmale (S-Größe und g.B.-Intensität) keine Horneffekte feststellen. FS, Pr&M-Muster sowie Harnstoffgehalt und SB (und z.T. Milchleistung) zeigten je FV ähnliche Effekt-Intensitäten für Futter-, Gruppen- und Zeiteffekte, und konnten die Cross-Over-Effekte gut wiedergeben. F- und E-Gehalte konnten neben tierindividuellen Effekten nur in FV B auch Futtereffekte aufzeigen. In FV C zeigten die SE der Proben den deutlichsten Futtereffekt, die anderen Methoden zeigten hier vorrangig Gruppen-Effekte, gefolgt von Futter- und Zeiteffekten. Die FAS zeigte den SB vergleichbare Ergebnisse, jedoch weniger sensibel reagierend. Die Interpretation von Qualitätsaspekten war bei konsistent differenzierbaren Proben (FV A, B, C) am fundiertesten mit Hilfe der FS möglich, da über die Synthese von FS und beeinflussende Faktoren schon vielfältige Erkenntnisse vorliegen. Das Pr&M-Muster war nach einer weiteren Methodenentwicklung bei der Deutung von Stoffwechselprozessen sehr hilfreich. Die FAS konnte z.T. eine zu der Fütterungsvariante passende Charakterisierung liefern. Für die SB-M fehlt es noch an Referenzmaterial, um Angaben zu Qualitätsaspekten zu machen, wenngleich Probenunterschiede aufgezeigt und Proben-Eigenschaften charakterisiert werden konnten.
Resumo:
Die Mikrobiota im Gastrointestinaltrakt (GIT) spielt eine bedeutende Rolle beim Fermentationsprozess im Bezug auf die Nährstoffversorgung sowie die Gesundheit des Darms und des gesamten Organismus. Inulin und resistente Stärke (RS) konnten als präbiotisch wirksame Substanzen identifiziert werden und sind jeweils auch in den Knollen der Topinamburpflanze (Helianthus tuberosus) und in Kartoffeln (Solanum tuberosum) enthalten. Da sie ebenfalls energiereiche Futtermittel für Schweine sind, war es das Ziel der ersten beiden Studien, die Auswirkungen der Aufnahme von Topinamburknollen und Kartoffeln auf die intestinale Mikrobiota und Parameter des Immunsystems bei Endmastschweinen zu bestimmen. In der dritten Studie wurde die mikrobielle Biomasse quantitativ mit einem Verfahren zur Isolation von Bakterien in einer Flüssigkeit durch Hochgeschwindigkeits-Zentrifugation erfasst und der bakteriell gebundene Stickstoff (MP-N) mit dem bakteriellen und endogenem Kotstickstoff (BEDN) verglichen. Im ersten Versuch wurden 72 Endmastschweine in einem Freilandhaltungssystem in eine Kontroll- (CT), die mit Kraftfutter entsprechend des Bedarfs der Tiere für ein Leistungsniveau von 700 g täglichem Lebendmassezuwachs versorgt wurde, und eine Versuchsvariante (ET) aufgeteilt. In der Versuchsvariante erhielten die Tiere nur 70% der Kraftfuttermenge der Kontrollvariante, hatten aber Zugang zu einer abgeteilten Fläche, auf der Topinamburknollen angebaut waren. Die freie Aufnahme von Topinamburknollen wurde auf 1•24 kg Trockenmasse (TM)/Tag bestimmt, entsprechend einer Inulinaufnahme von durchschnittlich 800 g/Tag. Während sich die Wachstumsleistung in der Kontrollvariante auf 0•642 ± 0•014 kg/Tag belief, war sie in der Versuchsvariante mit 0•765 ± 0•015 kg/Tag (P=0•000) höher. Die freie Verfügbarkeit von Inulin und Fructo-oligosacchariden (FOS) im GIT der Schweine erhöhte die Keimzahlen der anaeroben Bakterien (P=0•000), Laktobazillen (P=0•046) und Hefen (P=0•000) signifikant und verringerte das Vorkommen von Clostridium perfringens im Schweinekot erheblich von lg 5•24 ± 0•17 kolonie-bildende Einheiten pro g Frischmasse (KbE/ g FM) in der Kontrollvariante auf lg 0•96 ± 0•20 KbE/ g FM in der Versuchsvariante (P=0•000). C-reaktives Protein (CRP) und Antikörper gegen Lipopolysaccharide (LPS) von Escherichia coli J5 ließen keine Unterschiede zwischen den Fütterungsvarianten erkennen. In der zweiten Untersuchung wurden 58 Endmastschweine einer Kontrollvariante (CT), die bedarfsgerecht mit einer Kraftfuttermischung für ein Leistungsniveau von 700 g Tageszunahmen gefüttert wurde, und zwei Versuchsvarianten zugeteilt. Die Versuchsvarianten erhielten eine Menge von 1•2 kg TM gedämpften Kartoffeln (potato treatment, PT) oder gedämpften und einsilierten Kartoffeln (silage treatment, ST) pro Tag und nur 46% bzw. 43% der Menge des Kraftfutters der Kontrollvariante. Die Wachstumsleistung und Schlachtkörperzusammensetzung ließen keine signifikanten Unterschiede zwischen den Varianten erkennen. Im PT und ST waren gegenüber dem CT im Kot der pH-Wert sowie die Gehalte von TM, Neutral-Detergenz-Faser (NDF), unverdautem Futterstickstoff (UDN) und teilweise von Säure-Detergenz-Faser (ADF) signifikant niedriger (P=0•000) und die von Ammonium (NH4) und Ammoniumstickstoff (NH4-N) signifikant höher (P=0•000). Das hohe Angebot von hitzebehandelten Kartoffeln führte zu einer erheblichen Verringerung von E. coli (P=0•000), C. perfringens (P=0•000) und Immunoglobulin A gegen LPS von E. coli J5 (P=0•001). Darüber hinaus waren in der ersten Versuchsperiode im ST die aeroben und anaeroben Gesamtkeimzahlen sowie die Laktobazillen und Hefen gegenüber dem PT signifikant erhöht. Die Unterschiede in der Mikrobiota zwischen der Kontroll- und Versuchsvarianten weisen auf die positiven Auswirkungen von Topinamburknollen und hitzebehandelten Kartoffeln auf die Mikrobiota im hinteren Darmabschnitt hin. Das Ziel der dritten Untersuchung war die Modifizierung des Verfahrens zur Isolation von Bakterien in einer Flüssigkeit mittels verschiedener Zentrifugationsschritte, um ein mikrobielles Pellet (MP) zu erhalten, welches die quantitative Abtrennung und Erfassung der Bakterien in Schweinekot ermöglicht. Zusätzlich wurde der BEDN Anteil sowie die Gehalte der Aminozucker Galactosamin, Glucosamin, Mannosamin und Muraminsäure im Kot und im MP bestimmt. Die untersuchten Kotproben stammten von Schweinen eines Phosphor (P) Stoffwechselversuch. Zehn männlich-kastrierte Schweine mit einem durchschnittlichen Lebendgewicht von 51•1 ± 8•5 kg wurden einzeln in Stoffwechselkäfigen gehalten. Die Tiere wurden fünf Fütterungsvarianten zugeteilt, die dem Bedarf der Tiere für ein Leistungsniveau von 700 g Tageszunahmen entsprachen, in den Rationen 2 bis 5 jedoch eine P-Gehalt unter dem Tagesbedarf der Tiere aufwiesen und in den Rationen 3 bis 5 mit abgestuften Gehalten von 50, 100 sowie 200 mg/kg einer experimentellen Phytase ergänz waren. Die Absenkung des P Gehaltes im Futter verringerte den Asche- (P=0•024) und Trockenmassegehalt im Kot (P=0•017) sowie die P Konzentration im MP (P=0•000) signifikant. Die mikrobielle Biomasse im Kot wurde durch die Wiegung des MP auf durchschnittlich 467 g/kg TM bestimmt. Der Stickstoffgehalt im Kot betrug im Mittel 46•1 g/kg TM und der in die Bakterienmasse eingebaute Stickstoffanteil 27•1 g/kg TM bzw. 58% vom Gesamtstickstoffgehalt im Kot. Die BEDN Fraktion wurde auf 73% am Kotstickstoff bestimmt. Der P-Gehalt im Kot sowie der N Gehalt im MP mit durchschnittlichen 10•4 und 57•9 g/kg TM lagen im Bereich von Literaturangaben. Die P Gehalte im MP schwankten in Abhängigkeit von der Zugabe von Phytase signifikant (P=0•000) von 1•8 bis 4•8 g/kg TM. Die Aminozucker wiesen keine signifikanten unterschiede zwischen Fütterungsvarianten auf und lagen im Bereich von Werten von Rinderkot. Ergebnisse weisen darauf hin, dass die angewandte Methode zur direkten Quantifizierung der mikrobiellen Biomasse geeignet ist.
Resumo:
The use of renewable primary products as co-substrate or single substrate for biogas production has increased consistently over the last few years. Maize silage is the preferential energy crop used for fermentation due to its high methane (CH4) yield per hectare. Equally, the by-product, namely biogas slurry (BS), is used with increasing frequency as organic fertilizer to return nutrients to the soil and to maintain or increase the organic matter stocks and soil fertility. Studies concerning the application of energy crop-derived BS on the carbon (C) and nitrogen (N) mineralization dynamics are scarce. Thus, this thesis focused on the following objectives: I) The determination of the effects caused by rainfall patterns on the C and N dynamics from two contrasting organic fertilizers, namely BS from maize silage and composted cattle manure (CM), by monitoring emissions of nitrous oxide (N2O), carbon dioxide (CO2) and CH4 as well as leaching losses of C and N. II) The investigation of the impact of differences in soil moisture content after the application of BS and temperature on gaseous emissions (CO2, N2O and CH4) and leaching of C and N compounds. III) A comparison of BS properties obtained from biogas plants with different substrate inputs and operating parameters and their effect on C and N dynamics after application to differently textured soils with varying application rates and water contents. For the objectives I) and II) two experiments (experiment I and II) using undisturbed soil cores of a Haplic Luvisol were carried out. Objective III) was studied on a third experiment (experiment III) with disturbed soil samples. During experiment I three rainfall patterns were implemented including constant irrigation, continuous irrigation with periodic heavy rainfall events, and partial drying with rewetting periods. Biogas slurry and CM were applied at a rate of 100 kg N ha-1. During experiment II constant irrigation and an irrigation pattern with partial drying with rewetting periods were carried out at 13.5°C and 23.5°C. The application of BS took place either directly before a rewetting period or one week after the rewetting period stopped. Experiment III included two soils of different texture which were mixed with ten BS’s originating from ten different biogas plants. Treatments included low, medium and high BS-N application rates and water contents ranging from 50% to 100% of water holding capacity (WHC). Experiment I and II showed that after the application of BS cumulative N2O emissions were 4 times (162 mg N2O-N m-2) higher compared to the application of CM caused by a higher content of mineral N (Nmin) in the form of ammonium (NH4+) in the BS. The cumulative emissions of CO2, however, were on the same level for both fertilizers indicating similar amounts of readily available C after composting and fermentation of organic material. Leaching losses occurred predominantly in the mineral form of nitrate (NO3-) and were higher in BS amended soils (9 mg NO3--N m-2) compared to CM amended soils (5 mg NO3--N m-2). The rainfall pattern in experiment I and II merely affected the temporal production of C and N emissions resulting in reduced CO2 and enhanced N2O emissions during stronger irrigation events, but showed no effect on the cumulative emissions. Overall, a significant increase of CH4 consumption under inconstant irrigation was found. The time of fertilization had no effect on the overall C and N dynamics. Increasing temperature from 13.5°C to 23.5°C enhanced the CO2 and N2O emissions by a factor of 1.7 and 3.7, respectively. Due to the increased microbial activity with increasing temperature soil respiration was enhanced. This led to decreasing oxygen (O2) contents which in turn promoted denitrification in soil due to the extension of anaerobic microsites. Leaching losses of NO3- were also significantly affected by increasing temperature whereas the consumption of CH4 was not affected. The third experiment showed that the input materials of biogas plants affected the properties of the resulting BS. In particular the contents of DM and NH4+ were determined by the amount of added plant biomass and excrement-based biomass, respectively. Correlations between BS properties and CO2 or N2O emissions were not detected. Solely the ammonia (NH3) emissions showed a positive correlation with NH4+ content in BS as well as a negative correlation with the total C (Ct) content. The BS-N application rates affected the relative CO2 emissions (% of C supplied with BS) when applied to silty soil as well as the relative N2O emissions (% of N supplied with BS) when applied to sandy soil. The impacts on the C and N dynamics induced by BS application were exceeded by the differences induced by soil texture. Presumably, due to the higher clay content in silty soils, organic matter was stabilized by organo-mineral interactions and NH4+ was adsorbed at the cation exchange sites. Different water contents induced highest CO2 emissions and therefore optimal conditions for microbial activity at 75% of WHC in both soils. Cumulative nitrification was also highest at 75% and 50% of WHC whereas the relative N2O emissions increased with water content and showed higher N2O losses in sandy soils. In summary it can be stated that the findings of the present thesis confirmed the high fertilizer value of BS’s, caused by high concentrations of NH4+ and labile organic compounds such as readily available carbon. These attributes of BS’s are to a great extent independent of the input materials of biogas plants. However, considerably gaseous and leaching losses of N may occur especially at high moisture contents. The emissions of N2O after field application corresponded with those of animal slurries.