949 resultados para Signaling pathways


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Recently, it has been suggested osteocytes control the activities of bone formation (osteoblasts) and resorption (osteoclast), indicating their important regulatory role in bone remodelling. However, to date, the role of osteocytes in controlling bone vascularisation remains unknown. Our aim was to investigate the interaction between endothelial cells and osteocytes and to explore the possible molecular mechanisms during angiogenesis. To model osteocyte/endothelial cell interactions, we co-cultured osteocyte cell line (MLOY4) with endothelial cell line (HUVECs). Co-cultures were performed in 1:1 mixture of osteocytes and endothelial cells or by using the conditioned media (CM) transfer method. Real-time cell migration of HUVECs was measured with the transwell migration assay and xCELLigence system. Expression levels of angiogenesis- related genes were measured by quantitative real-time polymerase chain reaction (qRT-PCR). The effect of vascular endothelial growth factor (VEGF) and mitogen-activated phosphorylated kinase (MAPK) signaling were monitored by western blotting using relevant antibodies and inhibitors. During the bone formation, it was noted that osteocyte dendritic processes were closely connected to the blood vessels. The CM generated from MLOY4 cells-activated proliferation, migration, tube-like structure formation, and upregulation of angiogenic genes in endothelial cells suggesting that secretory factor(s) from osteocytes could be responsible for angiogenesis. Furthermore, we identified that VEGF secreted from MLOY4-activated VEGFR2–MAPK–ERK-signaling pathways in HUVECs. Inhibiting VEGF and/or MAPK–ERK pathways abrogated osteocyte-mediated angiogenesis in HUVEC cells. Our data suggest an important role of osteocytes in regulating angiogenesis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

INTRODUCTION: Our recent study indicated that subchondral bone pathogenesis in osteoarthritis (OA) is associated with osteocyte morphology and phenotypic abnormalities. However, the mechanism underlying this abnormality needs to be identified. In this study we investigated the effect of extracellular matrix (ECM) produced from normal and OA bone on osteocytic cells function. METHODS: De-cellularized matrices, resembling the bone provisional ECM secreted from primary human subchondral bone osteoblasts (SBOs) of normal and OA patients were used as a model to study the effect on osteocytic cells. Osteocytic cells (MLOY4 osteocyte cell line) cultured on normal and OA derived ECMs were analyzed by confocal microscopy, scanning electron microscopy (SEM), cell attachment assays, zymography, apoptosis assays, qRT-PCR and western blotting. The role of integrinβ1 and focal adhesion kinase (FAK) signaling pathways during these interactions were monitored using appropriate blocking antibodies. RESULTS: The ECM produced by OA SBOs contained less mineral content, showed altered organization of matrix proteins and matrix structure compared with the matrices produced by normal SBOs. Culture of osteocytic cells on these defective OA ECM resulted in a decrease of integrinβ1 expression and the de-activation of FAK cell signaling pathway, which subsequently affected the initial osteocytic cell's attachment and functions including morphological abnormalities of cytoskeletal structures, focal adhesions, increased apoptosis, altered osteocyte specific gene expression and increased Matrix metalloproteinases (MMP-2) and -9 expression. CONCLUSION: This study provides new insights in understanding how altered OA bone matrix can lead to the abnormal osteocyte phenotypic changes, which is typical in OA pathogenesis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Prostacyclin synthase and thromboxane synthase signaling via arachidonic acid metabolism affects a number of tumor cell survival pathways such as cell proliferation, apoptosis, tumor cell invasion and metastasis, and angiogenesis. However, the effects of these respective synthases differ considerably with respect to the pathways described. While prostacyclin synthase is generally believed to be anti-tumor, a pro-carcinogenic role for thromboxane synthase has been demonstrated in a variety of cancers. The balance of oppositely-acting COX-derived prostanoids influences many processes throughout the body, such as blood pressure regulation, clotting, and inflammation. The PGI2/TXA2 ratio is of particular interest in-vivo, with the corresponding synthases shown to be differentially regulated in a variety of disease states. Pharmacological inhibition of thromboxane synthase has been shown to significantly inhibit tumor cell growth, invasion, metastasis and angiogenesis in a range of experimental models. In direct contrast, prostacyclin synthase overexpression has been shown to be chemopreventive in a murine model of the disease, suggesting that the expression and activity of this enzyme may protect against tumor development. In this review, we discuss the aberrant expression and known functions of both prostacyclin synthase and thromboxane synthase in cancer. We discuss the effects of these enzymes on a range of tumor cell survival pathways, such as tumor cell proliferation, induction of apoptosis, invasion and metastasis, and tumor cell angiogenesis. As downstream signaling pathways of these enzymes have also been implicated in cancer states, we examine the role of downstream effectors of PGIS and TXS activity in tumor growth and progression. Finally, we discuss current therapeutic strategies aimed at targeting these enzymes for the prevention/treatment of cancer. © 2010 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objectives Titanium implant surfaces with modified topographies have improved osteogenic properties in vivo. However, the molecular mechanisms remain obscure. This study explored the signaling pathways responsible for the pro-osteogenic properties of micro-roughened (SLA) and chemically/nanostructurally (modSLA) modified titanium surfaces on human alveolar bone-derived osteoprogenitor cells (BCs) in vitro. Materials and methods The activation of stem cell signaling pathways (TGFβ/BMP, Wnt, FGF, Hedgehog, Notch) was investigated following early exposure (24 and 72 h) of BCs to SLA and modSLA surfaces in the absence of osteogenic cell culture supplements. Results Key regulatory genes from the TGFβ/BMP (TGFBR2, BMPR2, BMPR1B, ACVR1B, SMAD1, SMAD5), Wnt (Wnt/β-catenin and Wnt/Ca2+) (FZD1, FZD3, FZD5, LRP5, NFATC1, NFATC2, NFATC4, PYGO2, LEF1) and Notch (NOTCH1, NOTCH2, NOTCH4, PSEN1, PSEN2, PSENEN) pathways were upregulated on the modified surfaces. These findings correlated with a higher expression of osteogenic markers bone sialoprotein (IBSP) and osteocalcin (BGLAP), and bone differentiation factors BMP2, BMP6, and GDF15, as observed on the modified surfaces. Conclusions These findings demonstrate that the activation of the pro-osteogenic cell signaling pathways by modSLA and SLA surfaces leads to enhanced osteogenic differentiation as evidenced after 7 and 14 days culture in osteogenic media and provides a mechanistic insight into the superior osseointegration on the modified surfaces observed in vivo.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cancer is one of the most life-threatening diseases with many forms still regarded as incurable. The conventional cancer treatments have unwanted side effects such as the death of normal cells. A therapy that can accurately target and effectively kill tumor cells could address the inadequacies of the available therapies. Atmospheric gas plasmas (AGP) that are able to specifically kill cancerous cells offer a promising alternative approach compared to conventional therapies. AGP have been shown to exploit tumor-specific genetic defects and a recent trial in mice has confirmed its antitumor effects. The mechanism by which the AGP act on tumor cells but not normal cells is not fully understood. A review of the current literature suggests that reactive oxygen species (ROS) generated by AGP induce death of cancer cells by impairing the function of intracellular regulatory factors. The majority of cancer cells are defective in tumor suppressors that interfere normal cell growth pathways. It appears that pro-oncogene or tumor suppressor-dependent regulation of antioxidant/or ROS signaling pathways may be involved in AGP-induced cancer cell death. The toxic effects of ROS are mitigated by normal cells by adjustment of their metabolic pathways. On the other hand, tumor cells are mostly defective in several regulatory signaling pathways which lead to the loss of metabolic balance within the cells and consequently, the regulation of cell growth. This review article evaluates the impact of AGP on the activation of cellular signaling and its importance for exploring mechanisms for safe and efficient anticancer therapies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Molecular interactions that underlie pathophysiological states are being elucidated using techniques that profile proteomicend points in cellular systems. Within the field of cancer research, protein interaction networks play pivotal roles in the establishment and maintenance of the hallmarks of malignancy, including cell division, invasion, and migration. Multiple complementary tools enable a multifaceted view of how signal protein pathway alterations contribute to pathophysiological states.One pivotal technique is signal pathway profiling of patient tissue specimens. This microanalysis technology provides a proteomic snapshot at one point in time of cells directly procured from the native context of a tumor micro environment. To study the adaptive patterns of signal pathway events over time, before and after experimental therapy, it is necessary to obtain biopsies from patients before, during, and after therapy. A complementary approach is the profiling of cultured cell lines with and without treatment. Cultured cell models provide the opportunity to study short-term signal changes occurring over minutes to hours. Through this type of system, the effects of particular pharmacological agents may be used to test the effects of signal pathway inhibition or activation on multiple endpoints within a pathway. The complexity of the data generated has necessitated the development of mathematical models for optimal interpretation of interrelated signaling pathways. In combination,clinical proteomic biopsy profiling, tissue culture proteomic profiling, and mathematical modeling synergistically enable a deeper understanding of how protein associations lead to disease states and present new insights into the design of therapeutic regimens.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Lymphatic vessels guide interstitial fluid, modulate immune responses by regulating leukocyte and antigen trafficking to lymph nodes, and in a cancer setting enable tumor cells to track to regional lymph nodes. The aim of the study was to determine whether primary murine lymphatic endothelial cells (mLECs) show conserved vascular endothelial growth factor (VEGF) signaling pathways with human LECs (hLECs). LECs were successfully isolated from murine dermis and prostate. Similar to hLECs, vascular endothelial growth factor (VEGF) family ligands activated MAPK and pAkt intracellular signaling pathways in mLECs. We describe a robust protocol for isolation of mLECs which, by harnessing the power of transgenic and knockout mouse models, will be a useful tool to study how LEC phenotype contributes to alterations in lymphatic vessel formation and function.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Interstitial fibrosis, a histological process common to many kidney diseases, is the precursor state to end stage kidney disease, a devastating and costly outcome for the patient and the health system. Fibrosis is historically associated with chronic kidney disease (CKD) but emerging evidence is now linking many forms of acute kidney disease (AKD) with the development of CKD. Indeed, we and others have observed at least some degree of fibrosis in up to 50% of clinically defined cases of AKD. Epithelial cells of the proximal tubule (PTEC) are central in the development of kidney interstitial fibrosis. We combine the novel techniques of laser capture microdissection and multiplex-tandem PCR to identify and quantitate “real time” gene transcription profiles of purified PTEC isolated from human kidney biopsies that describe signaling pathways associated with this pathological fibrotic process. Our results: (i) confirm previous in-vitro and animal model studies; kidney injury molecule-1 is up-regulated in patients with acute tubular injury, inflammation, neutrophil infiltration and a range of chronic disease diagnoses, (ii) provide data to inform treatment; complement component 3 expression correlates with inflammation and acute tubular injury, (iii) identify potential new biomarkers; proline 4-hydroxylase transcription is down-regulated and vimentin is up-regulated across kidney diseases, (iv) describe previously unrecognized feedback mechanisms within PTEC; Smad-3 is down-regulated in many kidney diseases suggesting a possible negative feedback loop for TGF-β in the disease state, whilst tight junction protein-1 is up-regulated in many kidney diseases, suggesting feedback interactions with vimentin expression. These data demonstrate that the combined techniques of laser capture microdissection and multiplex-tandem PCR have the power to study molecular signaling within single cell populations derived from clinically sourced tissue.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Erwinia carotovora subsp. carotovora is a bacterial phytopathogen that causes soft rot in various agronomically important crop plants. A genetically specified resistance to E. carotovora has not been defined, and plant resistance to this pathogen is established through nonspecific activation of basal defense responses. This, together with the broad host range, makes this pathogen a good model for studying the activation of plant defenses. Production and secretion of plant cell wall-degrading enzymes (PCWDE) are central to the virulence of E. carotovora. It also possesses the type III secretion system (TTSS) utilized by many Gram-negative bacteria to secrete virulence- promoting effector proteins to plant cells. This study elucidated the role of E. carotovora HrpN (HrpNEcc), an effector protein secreted through TTSS, and the contribution of this protein in the virulence of E. carotovora. Treatment of plants with HrpNEcc was demonstrated to induce a hypersensitive response (HR) as well as resistance to E. carotovora. Resistance induced by HrpNEcc required both salicylic acid (SA)- and jasmonate/ethylene (JA/ET)-dependent defense signaling in Arabidopsis. Simultaneous treatment of Arabidopsis with HrpNEcc and PCWDE polygalacturonase PehA elicited accelerated and enhanced induction of defense genes but also increased production of superoxide and lesion formation. This demonstrates mutual amplification of defense signaling by these two virulence factors of E. carotovora. Identification of genes that are rapidly induced in response to a pathogen can provide novel information about the early events occurring in the plant defense response. CHLOROPHYLLASE 1 (AtCLH1) and EARLY RESPONSIVE TO DEHYDRATION 15 (ERD15) are both rapidly triggered by E. carotovora in Arabidopsis. Characterization of AtCLH1 encoding chlorophyll-degrading enzyme chlorophyllase indicated that it might have a role in chlorophyll degradation during plant tissue damage. Silencing of this gene resulted in increased accumulation of reactive oxygen species (ROS) in response to pathogen infection in a light-dependent manner. This led to enhanced SA-dependent defenses and resistance to E. carotovora. Moreover, crosstalk between different defense signaling pathways was observed; JA-dependent defenses and resistance to fungal pathogen Alternaria brassicicola were impaired, indicating antagonism between SA- and JA-dependent signaling. Characterization of ERD15 suggested that it is a novel, negative regulator of abscisic acid (ABA) signaling in Arabidopsis. Overexpression of ERD15 resulted in insensitivity to ABA and reduced tolerance of the plants to dehydration stress. However, simultaneously, the resistance of the plants to E. carotovora was enhanced. Silencing of ERD15 improved freezing and drought tolerance of transgenic plants. This, together with the reducing effect of ABA on seed germination, indicated hypersensitivity to this phytohormone. ERD15 was hypothesized to act as a capacitor that controls the appropriate activation of ABA responses in Arabidopsis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Initiation of proinflammatory host immunity in response to infection represents as a key event in effective control and containment of the pathogen at the site of infection as well as in elicitation of robust immune memory responses. In the current investigation, we demonstrate that an integral cell wall antigen of the mycobacterial envelope, Phosphatidyl-myo-inositol dimannosides (PIM2) triggers Suppressor of cytokine signaling (SOCS) 3 expression in macrophages in a Toll-like receptor 2 (TLR2)-MyD88 dependent manner. Data derived from signaling perturbations suggest the involvement of phosphoinositide-3 kinase (PI3K) and protein kinase C (PKC) signaling pathways during PIM2 induced SOCS3 expression. Further, pharmacological inhibition of ERK1/2, but not of p38 MAP kinase or JNK abrogated the induced expression of SOCS3. The PIM2 induced activation of ERK1/2 was dependent on the activation of PI3K or PKC signaling which in turn regulated p65 nuclear factor -kappa B (NF-kappa B) nuclear translocation. Overall, current study delineates the role for PI3K-PKC axis and ERK1/2 signaling as key signaling events during PIM2 induced SOCS3 expression in macrophages.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Neurotrophic factors (NTFs) and the extracellular matrix (ECM) are important regulators of axonal growth and neuronal survival in mammalian nervous system. Understanding of the mechanisms of this regulation is crucial for the development of posttraumatic therapies and drug intervention in the injured nervous system. NTFs act as soluble, target-derived extracellular regulatory molecules for a wide range of physiological functions including axonal guidance and the regulation of programmed cell death in the nervous system. The ECM determines cell adhesion and regulates multiple physiological functions via short range cell-matrix interactions. The present work focuses on the mechanisms of the action of NTFs and the ECM on axonal growth and survival of cultured sensory neurons from dorsal root ganglia (DRG). We first examined signaling mechanisms of the action of the glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs) on axonal growth. GDNF, neurturin (NRTN) and artemin (ART) but not persephin (PSPN) promoted axonal initiation in cultured DRG neurons from young adult mice. This effect required Src family kinase (SFK) activity. In neurons from GFRalpha2-deficient mice, NRTN did not significantly promote axonal initiation. GDNF and NRTN induced extensive lamellipodia formation on neuronal somata and growth cones. This study suggested that GDNF, NRTN and ARTN may serve as stimulators of nerve regeneration under posttraumatic conditions. Consequently we studied the convergence of signaling pathways induced by NTFs and the ECM molecule laminin in the intracellular signaling network that regulates axonal growth. We demonstrated that co-stimulation of DRG neurons with NTFs (GDNF, NRTN or nerve growth factor (NGF)) and laminin leads to axonal growth that requires activation of SFKs. A different, SFK-independent signaling pathway evoked axonal growth on laminin in the absence of the NTFs. In contrast, axonal branching was regulated by SFKs both in the presence and in the absence of NGF. We proposed and experimentally verified a Boolean model of the signaling network triggered by NTFs and laminin. Our results put forward an approach for predictable, Boolean logics-driven pharmacological manipulation of a complex signaling network. Finally we found that N-syndecan, the receptor for the ECM component HB-GAM was required for the survival of neonatal sensory neurons in vitro. We demonstrated massive cell death of cultured DRG neurons from mice deficient in the N-syndecan gene as compared to wild type controls. Importantly, this cell death could not be prevented by NGF the neurotrophin which activates multiple anti-apoptotic cascades in DRG neurons. The survival deficit was observed during first postnatal week. By contrast, DRG neurons from young adult N-syndecan knock-out mice exhibited normal survival. This study identifies a completely new syndecan-dependent type of signaling that regulates cell death in neurons.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tumorigenesis is a consequence of inactivating mutations of tumor suppressor genes and activating mutations of proto-oncogenes. Most of the mutations compromise cell autonomous and non-autonomous restrains on cell proliferation by modulating kinase signal transduction pathways. LKB1 is a tumor suppressor kinase whose sporadic mutations are frequently found in non-small cell lung cancer and cervical cancer. Germ-line mutations in the LKB1 gene lead to Peutz-Jeghers syndrome with an increased risk of cancer and development of benign gastrointestinal hamartomatous polyps consisting of hyperproliferative epithelia and prominent stromal stalk composed of smooth muscle cell lineage cells. The tumor suppressive function of LKB1 is possibly mediated by 14 identified LKB1 substrate kinases, whose activation is dependent on the LKB1 kinase complex. The aim of my thesis was to identify cell signaling pathways crucial for tumor suppression by LKB1. Re-introduction of LKB1 expression in the melanoma cell line G361 induces cell cycle arrest. Here we demonstrated that restoring the cytoplasmic LKB1 was sufficient to induce the cell cycle arrest in a tumor suppressor p53 dependent manner. To address the role of LKB1 in gastrointestinal tumor suppression, Lkb1 was deleted specifically in SMC lineage in vivo, which was sufficient to cause Peutz-Jeghers syndrome type polyposis. Studies on primary myofibroblasts lacking Lkb1 suggest that the regulation of TGFβ signaling, actin stress fibers and smooth muscle cell lineage differentiation are candidate mechanisms for tumor suppression by LKB1 in the gastrointestinal stroma. Further studies with LKB1 substrate kinase NUAK2 in HeLa cells indicate that NUAK2 is part of a positive feedback loop by which NUAK2 expression promotes actin stress fiber formation and, reciprocally the induction of actin stress fibers promote NUAK2 expression. Findings in this thesis suggest that p53 and TGFβ signaling pathways are potential mediators of tumor suppression by LKB1. An indication of NUAK2 in the promotion of actin stress fibers suggests that NUAK2 is one possible mediator of LKB1 dependent TGFβ signaling and smooth muscle cell lineage differentiation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Embryonic midbrain and hindbrain are structures which will give rise to brain stem and cerebellum in the adult vertebrates. Brain stem contains several nuclei which are essential for the regulation of movements and behavior. They include serotonin-producing neurons, which develop in the hindbrain, and dopamine-producing neurons in the ventral midbrain. Degeneration and malfunction of these neurons leads to various neurological disorders, including schizophrenia, depression, Alzheimer s, and Parkinson s disease. Thus, understanding their development is of high interest. During embryogenesis, a local signaling center called isthmic organizer regulates the development of midbrain and anterior hindbrain. It secretes peptides belonging to fibroblast growth factor (FGF) and Wingless/Int (Wnt) families. These factors bind to their receptors in the surrounding tissues, and activate various downstream signaling pathways which lead to alterations in gene expression. This in turn affects the various developmental processes in this region, such as proliferation, survival, patterning, and neuronal differentiation. In this study we have analyzed the role of FGFs in the development of midbrain and anterior hindbrain, by using mouse as a model organism. We show that FGF receptors cooperate to receive isthmic signals, and cell-autonomously promote cell survival, proliferation, and maintenance of neuronal progenitors. FGF signaling is required for the maintenance of Sox3 and Hes1 expression in progenitors, and Hes1 in turn suppresses the activity of proneural genes. Loss of Hes1 is correlated with increased cell cycle exit and premature neuronal differentiation. We further demonstrate that FGF8 protein forms an antero-posterior gradient in the basal lamina, and might enter the neuronal progenitors via their basal processes. We also analyze the impact of FGF signaling on the various neuronal nuclei in midbrain and hindbrain. Rostral serotonergic neurons appear to require high levels of FGF signaling in order to develop. In the absence of FGF signaling, these neurons are absent. We also show that embryonic meso-diencephalic dopaminergic domain consists of two populations in the anterior-posterior direction, and that these populations display different molecular profiles. The anterior diencephalic domain appears less dependent on isthmic FGFs, and lack several genes typical of midbrain dopaminergic neurons, such as Pitx3 and DAT. In Fgfr compound mutants, midbrain dopaminergic neurons begin to develop but soon adopt characteristics which highly resemble those of diencephalic dopaminergic precursors. Our results indicate that FGF signaling regulates patterning of these two domains cell-autonomously.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Though 293T cells are widely used for expression of proteins from transfected plasmid vectors, the molecular basis for the high-level expression is yet to be understood. We recently identified the prostate carcinoma cell line PC3 to be as efficient as 293T in protein expression. This study was undertaken to decipher the molecular basis of high-level expression in these two cell lines. Methodology/Principal Findings: In a survey of different cell lines for efficient expression of platelet-derived growth factor-B (PDGF-B), beta-galactosidase (beta-gal) and green fluorescent protein (GFP) from plasmid vectors, PC3 was found to express at 5-50-fold higher levels compared to the bone metastatic prostate carcinoma cell line PC3BM and many other cell lines. Further, the efficiency of transfection and level of expression of the reporters in PC3 were comparable to that in 293T. Comparative analyses revealed that the high level expression of the reporters in the two cell lines was due to increased translational efficiency. While phosphatidic acid (PA)-mediated activation of mTOR, as revealed by drastic reduction in reporter expression by n-butanol, primarily contributed to the high level expression in PC3, multiple pathways involving PA, PI3K/Akt and ERK1/2 appear to contribute to the abundant reporter expression in 293T. Thus the extent of translational upregulation attained through the concerted activation of mTOR by multiple pathways in 293T could be achieved through its activation primarily by the PA pathway in PC3. Conclusions/Significance: Our studies reveal that the high-level expression of proteins from plasmid vectors is effected by translational up-regulation through mTOR activation via different signaling pathways in the two cell lines and that PC3 is as efficient as 293T for recombinant protein expression. Further, PC3 offers an advantage in that the level of expression of the protein can be regulated by simple addition of n-butanol to the culture medium.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purinergic signaling plays a key role in a variety of physiological functions, including regulation of immune responses. Conventional alpha beta T cells release ATP upon TCR cross-linking; ATP binds to purinergic receptors expressed by these cells and triggers T cell activation in an autocrine and paracrine manner. Here, we studied whether similar purinergic signaling pathways also operate in the ``unconventional'' gamma delta T lymphocytes. We observed that gamma delta T cells purified from peripheral human blood rapidly release ATP upon in vitro stimulation with anti-CD3/CD28-coated beads or IPP. Pretreatment of gamma delta T cells with (10)panx-1, CBX, or Bf A reversed the stimulation-induced increase in extracellular ATP concentration, indicating that panx-1, connexin hemichannels, and vesicular exocytosis contribute to the controlled release of cellular ATP. Blockade of ATP release with (10)panx-1 inhibited Ca2+ signaling in response to TCR stimulation. qPCR revealed that gamma delta T cells predominantly express purinergic receptor subtypes A2a, P2X1, P2X4, P2X7, and P2Y11. We found that pharmacological inhibition of P2X4 receptors with TNP-ATP inhibited transcriptional up-regulation of TNF-alpha and IFN-gamma in gamma delta T cells stimulated with anti-CD3/CD28-coated beads or IPP. Our data thus indicate that purinergic signaling via P2X4 receptors plays an important role in orchestrating the functional response of circulating human gamma delta T cells. J. Leukoc. Biol. 92: 787-794; 2012.