886 resultados para Sensory liking
Resumo:
A recently generalized theory of perceptual guidance (general tau theory) was used to analyse coordination in skilled movement. The theory posits that (i) guiding movement entails controlling closure of spatial and/or force gaps between effecters and goals, by sensing and regulating the tau s of the gaps (the time-to-closure at current closure rate), (ii) a principal way of coordinating movements is keeping the rs of different gaps in constant ratio (known as tau-coupling), and (iii) intrinsically paced movements are guided and coordinated by tau-coupling onto a tau-guide, tau(g), generated in the nervous system and described by the equation tau(g) = 0.5(t-T-2/t) where T is the duration of the body movement and t is the time from the start of the movement. Kinematic analysis of hand to mouth movements by human adults, with eyes open or closed, indicated that hand guidance was achieved by maintaining, during 80-85% of the movement, the tau-couplings tau(alpha)-tau(t) and tau(t)-tau(g), where tau(t) is tau of the hand-mouth gap, tau(alpha) is tau of the angular gap to be closed by steering the hand and tau(g) is an intrinsic tau-guide.
Resumo:
Studies in sensory neuroscience reveal the critical importance of accurate sensory perception for cognitive development. There is considerable debate concerning the possible sensory correlates of phonological processing, the primary cognitive risk factor for developmental dyslexia. Across languages, children with dyslexia have a specific difficulty with the neural representation of the phonological structure of speech. The identification of a robust sensory marker of phonological difficulties would enable early identification of risk for developmental dyslexia and early targeted intervention. Here, we explore whether phonological processing difficulties are associated with difficulties in processing acoustic cues to speech rhythm. Speech rhythm is used across languages by infants to segment the speech stream into words and syllables. Early difficulties in perceiving auditory sensory cues to speech rhythm and prosody could lead developmentally to impairments in phonology. We compared matched samples of children with and without dyslexia, learning three very different spoken and written languages, English, Spanish, and Chinese. The key sensory cue measured was rate of onset of the amplitude envelope (rise time), known to be critical for the rhythmic timing of speech. Despite phonological and orthographic differences, for each language, rise time sensitivity was a significant predictor of phonological awareness, and rise time was the only consistent predictor of reading acquisition. The data support a language-universal theory of the neural basis of developmental dyslexia on the basis of rhythmic perception and syllable segmentation. They also suggest that novel remediation strategies on the basis of rhythm and music may offer benefits for phonological and linguistic development.
Resumo:
Objective: To investigate barriers to increasing fruit and vegetable (f + v) intakes in a large sample of the older population of Northern Ireland (NI), in relation to current intakes.
Resumo:
The identification of the sensory cues and mechanisms by which migratory birds are able to reach the same breeding and wintering grounds year after year has eluded biologists despite more than 50 years of intensive study. While a number of environmental cues have been proposed to play a role in the navigation of birds, arguments still persist about which cues are essential for the experience based navigation shown by adult migrants. To date, few studies have tested the sensory basis of navigational cues used during actual migration in the wild: mainly laboratory based studies or homing during the non-migratory season have been used to investigate this behaviour. Here we tested the role of olfactory and magnetic cues in the migration of the catbird (Dumetella carolinensis) by radio tracking the migration of birds with sensory manipulations during their actual migratory flights. Our data suggest that adult birds treated with zinc sulphate to produce anosmia were unable to show the same orientation as control adults, and instead reverted to a direction similar to that shown by juveniles making their first migration. The magnetic manipulation had no effect on the orientation of either adults or juveniles. These results allow us to propose that the olfactory sense may play a role in experience based migration in adult catbirds. While the olfactory sense has been shown to play a role in the homing of pigeons and other birds, this is the first time it has been implicated in migratory orientation.
Resumo:
The megachiropteran fruit bat Rousettus aegyptiacus is able to orient and navigate using both vision and echolocation. These two sensory systems have different environmental constraints however, echolocation being relatively short range when compared with vision. Despite this difference, an experiment testing their memory of a perch location demonstrates that once the location of a perch is learned R. aegyptiacus is not influenced by the movement of local landmark cues in the vicinity of the perch under either light or dark conditions. Thus despite the differing constraints of vision and echolocation, this suggests a place is remembered as a location in space and not by associations with landmarks in the vicinity. A decrease in initial performance when the task was repeated in the dark suggested the possibility that a memory of a location learned using vision does not generalize to echolocation.
Resumo:
In older adults, cognitive resources play a key role in maintaining postural stability. In the present study, we evaluated whether increasing postural instability using sway referencing induces changes in resource allocation in dual-task performance leading older adults to prioritize the more age-salient posture task over a cognitive task. Young and older adults participated in the study which comprised two sessions. In the first session, three posture tasks (stable, sway reference visual, sway reference somatosensory) and a working memory task (n-back) were examined. In the second session, single- and dual-task performance of posture and memory were assessed. Postural stability improved with session. Participants were more unstable in the sway reference conditions, and pronounced age differences were observed in the somatosensory sway reference condition. In dual-task performance on the stable surface, older adults showed an almost 40% increase in instability compared to single-task. However, in the sway reference somatosensory condition, stability was the same in single- and dual-task performance, whereas pronounced (15%) costs emerged for cognition. These results show that during dual-tasking while standing on a stable surface, older adults have the flexibility to allow an increase in instability to accommodate cognitive task performance. However, when instability increases by means of compromising somatosensory information, levels of postural control are kept similar in single- and dual-task, by utilizing resources otherwise allocated to the cognitive task. This evidence emphasizes the flexible nature of resource allocation, developed over the life-span to compensate for age-related decline in sensorimotor and cognitive processing.
Resumo:
The core difficulty in developmental dyslexia across languages is a "phonological deficit", a specific difficulty with the neural representation of the sound structure of words. Recent data across languages suggest that this phonological deficit arises in part from inefficient auditory processing of the rate of change of the amplitude envelope at syllable onset (inefficient sensory processing of rise time). Rise time is a complex percept that also involves changes in duration and perceived intensity. Understanding the neural mechanisms that give rise to the phonological deficit in dyslexia is important for optimising educational interventions. In a three-deviant passive 'oddball' paradigm and a corresponding blocked 'deviant-alone' control condition we recorded ERPs to tones varying in rise time, duration and intensity in children with dyslexia and typically developing children longitudinally. We report here results from test Phases 1 and 2, when participants were aged 8-10. years. We found an MMN to duration, but not to rise time nor intensity deviants, at both time points for both groups. For rise time, duration and intensity we found group effects in both the Oddball and Blocked conditions. There was a slower fronto-central P1 response in the dyslexic group compared to controls. The amplitude of the P1 fronto-centrally to tones with slower rise times and lower intensity was smaller compared to tones with sharper rise times and higher intensity in the Oddball condition, for children with dyslexia only. The latency of this ERP component for all three stimuli was shorter on the right compared to the left hemisphere, only for the dyslexic group in the Blocked condition. Furthermore, we found decreased N1c amplitude to tones with slower rise times compared to tones with sharper rise times for children with dyslexia, only in the Oddball condition. Several other effects of stimulus type, age and laterality were also observed. Our data suggest that neuronal responses underlying some aspects of auditory sensory processing may be impaired in dyslexia. © 2011 Elsevier Inc.
Resumo:
The effect of restructuring the form of three unfamiliar pop/rock songs was investigated in two experiments. In the first experiment, listeners' judgements of the likely location of sections of novel popular songs were explored by requiring participants to place the eight sections (Intro - Verse 1 - Chorus 1 - Verse 2 - Chorus 2 - Bridge (solo) - Chorus 3 - Extro) of the songs into the locations they thought them most likely to occur within the song. Results revealed that participants were able to place the sections in approximately the right location with some accuracy, though they were unable to differentiate between choruses. In Experiment 2, three versions of each of the songs were presented in three different structures: intact (original form), medium restructured (the sections in a moderately changed order), and highly restructured (more severe restructuring). The results show that listeners' judgments of predictability and liking were largely uninfluenced by the restructuring of the songs, in line with findings for classical music. Moment-by-moment liking judgements of the songs demonstrated a change in liking judgements with repeated exposure, though the trend was downwards with repeated exposure rather than upwards. Detailed analysis of moment-by-moment judgements at the ends and beginnings of sections showed that listeners were able to respond quickly to intact songs, but not to restructured songs. The results suggest that concatenism prevails in listening to popular song at the expense of paying attention to larger structural features. © 2012 by the regents of the university of california all rights reserved.
Resumo:
Despite being largely characterised as a social and cognitive disorder, strong evidence indicates the presence of significant sensory-motor problems in Autism Spectrum Disorder (ASD). This paper outlines our progression from initial, broad assessment using the Movement Assessment Battery for Children (M-ABC) to subsequent targeted kinematic assessment. In particular, pronounced ASD impairment seen in the broad categories of manual dexterity and ball skills was found to be routed in specific difficulties on isolated tasks, which were translated into focused experimental assessment. Kinematic results from both subsequent studies highlight impaired use of perception-action coupling to guide, adapt and tailor movement to task demands, resulting in inflexible and rigid motor profiles. In particular difficulties with the use of temporal adaption are shown, with "hyperdexterity" witnessed in ballistic movement profiles, often at the cost of spatial accuracy and task performance. By linearly progressing from the use of a standardised assessment tool to targeted kinematic assessment, clear and defined links are drawn between measureable difficulties and underlying sensory-motor assessment. Results are specifically viewed in-light of perception-action coupling and its role in early infant development suggesting that rather than being 'secondary' level impairment, sensory-motor problems may be fundamental in the progression of ASD. This logical and systematic process thus allows a further understanding into the potential route of observable motor problems in ASD; a vital step if underlying motor problems are to be considered a fundamental aspect of autism and allow a route of non-invasive preliminary diagnosis.