953 resultados para Semi-supervised classification
Resumo:
The main objective of this study was to perform a temporal analysis of land use and cover of Itirapina – São Paulo estate, Brazil, for 1962, 2000 and 2008 scenarios, indicating the rate of change in native vegetation and contextualizing its modifications. Based on photointerpretation performed by supervised classification using the method of Bhattacharya, the thematic classes were mapped and characterized in an area equivalent to 56400 hectares. Using remote sensing technologies and geographic information systems, was structured and implemented a georeferenced and relational database, allowing the analysis of the size of the area occupied. The results showed that the expansion of cultivation of cane sugar and reforestation in the past 45 years has been conditioned the fragmentation of natural vegetation cover in the city, which fell by 34793 ha (61,7%) in 1962 to 9765,2 ha (17,3%) in 2008, with the loss of 25027,8 hectares.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study aimed to recognize the significant temporal changes in land use between 1984 and 2008 in Barra Bonita City/ SP and to analyze the conflicts of land use in permanent preservation areas (PPA) with reference to the Forest Code and Resolution N. 303/2002 of CONAMA. The GIS Idrisi Andes 5.0 – geographic information system was used and the images were processed by LANDSAT TM5. Maps of land use were obtained by Maxver supervised classification and showed that in 1984 the area occupied by sugar cane crop was about 10.50 ha (70%) in 1984 and 10.90 ha in 2008. In analysis of conflicts about land use in permanent preservation areas showed that in 24 years the sugar-cane crops increased 3.6% on PPA. The occupation was represented by adequate forest of 279.25 ha (31.5% of total) in 1984. In 2008, the sugar-cane crop was the biggest conflict in PPA occupying 357.9 ha and 11.4% corresponds to areas in preparation for use. This year, 59.5% of total PPA is at odds with environmental legislation.
Resumo:
The aim of this work is to discriminate vegetation classes throught remote sensing images from the satellite CBERS-2, related to winter and summer seasons in the Campos Gerais region Paraná State, Brazil. The vegetation cover of the region presents different kinds of vegetations: summer and winter cultures, reforestation areas, natural areas and pasture. Supervised classification techniques like Maximum Likelihood Classifier (MLC) and Decision Tree were evaluated, considering a set of attributes from images, composed by bands of the CCD sensor (1, 2, 3, 4), vegetation indices (CTVI, DVI, GEMI, NDVI, SR, SAVI, TVI), mixture models (soil, shadow, vegetation) and the two first main components. The evaluation of the classifications accuracy was made using the classification error matrix and the kappa coefficient. It was defined a high discriminatory level during the classes definition, in order to allow separation of different kinds of winter and summer crops. The classification accuracy by decision tree was 94.5% and the kappa coefficient was 0.9389 for the scene 157/128. For the scene 158/127, the values were 88% and 0.8667, respectively. The classification accuracy by MLC was 84.86% and the kappa coefficient was 0.8099 for the scene 157/128. For the scene 158/127, the values were 77.90% and 0.7476, respectively. The results showed a better performance of the Decision Tree classifier than MLC, especially to the classes related to cultivated crops, indicating the use of the Decision Tree classifier to the vegetation cover mapping including different kinds of crops.
Resumo:
Complex networks have been employed to model many real systems and as a modeling tool in a myriad of applications. In this paper, we use the framework of complex networks to the problem of supervised classification in the word disambiguation task, which consists in deriving a function from the supervised (or labeled) training data of ambiguous words. Traditional supervised data classification takes into account only topological or physical features of the input data. On the other hand, the human (animal) brain performs both low- and high-level orders of learning and it has facility to identify patterns according to the semantic meaning of the input data. In this paper, we apply a hybrid technique which encompasses both types of learning in the field of word sense disambiguation and show that the high-level order of learning can really improve the accuracy rate of the model. This evidence serves to demonstrate that the internal structures formed by the words do present patterns that, generally, cannot be correctly unveiled by only traditional techniques. Finally, we exhibit the behavior of the model for different weights of the low- and high-level classifiers by plotting decision boundaries. This study helps one to better understand the effectiveness of the model. Copyright (C) EPLA, 2012
Resumo:
Although Recovery is often defined as the less studied and documented phase of the Emergency Management Cycle, a wide literature is available for describing characteristics and sub-phases of this process. Previous works do not allow to gain an overall perspective because of a lack of systematic consistent monitoring of recovery utilizing advanced technologies such as remote sensing and GIS technologies. Taking into consideration the key role of Remote Sensing in Response and Damage Assessment, this thesis is aimed to verify the appropriateness of such advanced monitoring techniques to detect recovery advancements over time, with close attention to the main characteristics of the study event: Hurricane Katrina storm surge. Based on multi-source, multi-sensor and multi-temporal data, the post-Katrina recovery was analysed using both a qualitative and a quantitative approach. The first phase was dedicated to the investigation of the relation between urban types, damage and recovery state, referring to geographical and technological parameters. Damage and recovery scales were proposed to review critical observations on remarkable surge- induced effects on various typologies of structures, analyzed at a per-building level. This wide-ranging investigation allowed a new understanding of the distinctive features of the recovery process. A quantitative analysis was employed to develop methodological procedures suited to recognize and monitor distribution, timing and characteristics of recovery activities in the study area. Promising results, gained by applying supervised classification algorithms to detect localization and distribution of blue tarp, have proved that this methodology may help the analyst in the detection and monitoring of recovery activities in areas that have been affected by medium damage. The study found that Mahalanobis Distance was the classifier which provided the most accurate results, in localising blue roofs with 93.7% of blue roof classified correctly and a producer accuracy of 70%. It was seen to be the classifier least sensitive to spectral signature alteration. The application of the dissimilarity textural classification to satellite imagery has demonstrated the suitability of this technique for the detection of debris distribution and for the monitoring of demolition and reconstruction activities in the study area. Linking these geographically extensive techniques with expert per-building interpretation of advanced-technology ground surveys provides a multi-faceted view of the physical recovery process. Remote sensing and GIS technologies combined to advanced ground survey approach provides extremely valuable capability in Recovery activities monitoring and may constitute a technical basis to lead aid organization and local government in the Recovery management.
Resumo:
In the past decade, the advent of efficient genome sequencing tools and high-throughput experimental biotechnology has lead to enormous progress in the life science. Among the most important innovations is the microarray tecnology. It allows to quantify the expression for thousands of genes simultaneously by measurin the hybridization from a tissue of interest to probes on a small glass or plastic slide. The characteristics of these data include a fair amount of random noise, a predictor dimension in the thousand, and a sample noise in the dozens. One of the most exciting areas to which microarray technology has been applied is the challenge of deciphering complex disease such as cancer. In these studies, samples are taken from two or more groups of individuals with heterogeneous phenotypes, pathologies, or clinical outcomes. these samples are hybridized to microarrays in an effort to find a small number of genes which are strongly correlated with the group of individuals. Eventhough today methods to analyse the data are welle developed and close to reach a standard organization (through the effort of preposed International project like Microarray Gene Expression Data -MGED- Society [1]) it is not unfrequant to stumble in a clinician's question that do not have a compelling statistical method that could permit to answer it.The contribution of this dissertation in deciphering disease regards the development of new approaches aiming at handle open problems posed by clinicians in handle specific experimental designs. In Chapter 1 starting from a biological necessary introduction, we revise the microarray tecnologies and all the important steps that involve an experiment from the production of the array, to the quality controls ending with preprocessing steps that will be used into the data analysis in the rest of the dissertation. While in Chapter 2 a critical review of standard analysis methods are provided stressing most of problems that In Chapter 3 is introduced a method to adress the issue of unbalanced design of miacroarray experiments. In microarray experiments, experimental design is a crucial starting-point for obtaining reasonable results. In a two-class problem, an equal or similar number of samples it should be collected between the two classes. However in some cases, e.g. rare pathologies, the approach to be taken is less evident. We propose to address this issue by applying a modified version of SAM [2]. MultiSAM consists in a reiterated application of a SAM analysis, comparing the less populated class (LPC) with 1,000 random samplings of the same size from the more populated class (MPC) A list of the differentially expressed genes is generated for each SAM application. After 1,000 reiterations, each single probe given a "score" ranging from 0 to 1,000 based on its recurrence in the 1,000 lists as differentially expressed. The performance of MultiSAM was compared to the performance of SAM and LIMMA [3] over two simulated data sets via beta and exponential distribution. The results of all three algorithms over low- noise data sets seems acceptable However, on a real unbalanced two-channel data set reagardin Chronic Lymphocitic Leukemia, LIMMA finds no significant probe, SAM finds 23 significantly changed probes but cannot separate the two classes, while MultiSAM finds 122 probes with score >300 and separates the data into two clusters by hierarchical clustering. We also report extra-assay validation in terms of differentially expressed genes Although standard algorithms perform well over low-noise simulated data sets, multi-SAM seems to be the only one able to reveal subtle differences in gene expression profiles on real unbalanced data. In Chapter 4 a method to adress similarities evaluation in a three-class prblem by means of Relevance Vector Machine [4] is described. In fact, looking at microarray data in a prognostic and diagnostic clinical framework, not only differences could have a crucial role. In some cases similarities can give useful and, sometimes even more, important information. The goal, given three classes, could be to establish, with a certain level of confidence, if the third one is similar to the first or the second one. In this work we show that Relevance Vector Machine (RVM) [2] could be a possible solutions to the limitation of standard supervised classification. In fact, RVM offers many advantages compared, for example, with his well-known precursor (Support Vector Machine - SVM [3]). Among these advantages, the estimate of posterior probability of class membership represents a key feature to address the similarity issue. This is a highly important, but often overlooked, option of any practical pattern recognition system. We focused on Tumor-Grade-three-class problem, so we have 67 samples of grade I (G1), 54 samples of grade 3 (G3) and 100 samples of grade 2 (G2). The goal is to find a model able to separate G1 from G3, then evaluate the third class G2 as test-set to obtain the probability for samples of G2 to be member of class G1 or class G3. The analysis showed that breast cancer samples of grade II have a molecular profile more similar to breast cancer samples of grade I. Looking at the literature this result have been guessed, but no measure of significance was gived before.
Resumo:
Auf einer drei Anbauperioden umfassenden Ground Truth Datenbasis wird der Informationsgehalt multitemporaler ERS-1/-2 Synthetic Aperture Radar (SAR) Daten zur Erfassung der Arteninventare und des Zustandes landwirtschaftlich genutzter Böden und Vegetation in Agrarregionen Bayerns evaluiert.Dazu wird ein für Radardaten angepaßtes, multitemporales, auf landwirtschaftlichen Schlägen beruhendes Klassifizierungsverfahren ausgearbeitet, das auf bildstatistischen Parametern der ERS-Zeitreihen beruht. Als überwachte Klassifizierungsverfahren wird vergleichend der Maximum-Likelihood-Klassifikator und ein Neuronales-Backpropagation-Netz eingesetzt. Die auf Radarbildkanälen beruhenden Gesamtgenauigkeiten variieren zwischen 75 und 85%. Darüber hinaus wird gezeigt, daß die interferometrische Kohärenz und die Kombination mit Bildkanälen optischer Sensoren (Landsat-TM, SPOT-PAN und IRS-1C-PAN) zur Verbesserung der Klassifizierung beitragen. Gleichermaßen können die Klassifizierungsergebnisse durch eine vorgeschaltete Grobsegmentierung des Untersuchungsgebietes in naturräumlich homogene Raumeinheiten verbessert werden. Über die Landnutzungsklassifizierung hinaus, werden weitere bio- und bodenphysikalische Parameter aus den SAR-Daten anhand von Regressionsmodellen abgeleitet. Im Mittelpunkt stehen die Paramter oberflächennahen Bodenfeuchte vegetationsfreier/-armer Flächen sowie die Biomasse landwirtschaftlicher Kulturen. Die Ergebnisse zeigen, daß mit ERS-1/-2 SAR-Daten eine Messung der Bodenfeuchte möglich ist, wenn Informationen zur Bodenrauhigkeit vorliegen. Hinsichtlich der biophysikalischen Parameter sind signifikante Zusammenhänge zwischen der Frisch- bzw. Trockenmasse des Vegetationsbestandes verschiedener Getreide und dem Radarsignal nachweisbar. Die Biomasse-Informationen können zur Korrektur von Wachstumsmodellen genutzt werden und dazu beitragen, die Genauigkeit von Ertragsschätzungen zu steigern.
Resumo:
In den letzten drei Jahrzehnten sind Fernerkundung und GIS in den Geowissenschaften zunehmend wichtiger geworden, um die konventionellen Methoden von Datensammlung und zur Herstellung von Landkarten zu verbessern. Die vorliegende Arbeit befasst sich mit der Anwendung von Fernerkundung und geographischen Informationssystemen (GIS) für geomorphologische Untersuchungen. Durch die Kombination beider Techniken ist es vor allem möglich geworden, geomorphologische Formen im Überblick und dennoch detailliert zu erfassen. Als Grundlagen werden in dieser Arbeit topographische und geologische Karten, Satellitenbilder und Klimadaten benutzt. Die Arbeit besteht aus 6 Kapiteln. Das erste Kapitel gibt einen allgemeinen Überblick über den Untersuchungsraum. Dieser umfasst folgende morphologische Einheiten, klimatischen Verhältnisse, insbesondere die Ariditätsindizes der Küsten- und Gebirgslandschaft sowie das Siedlungsmuster beschrieben. Kapitel 2 befasst sich mit der regionalen Geologie und Stratigraphie des Untersuchungsraumes. Es wird versucht, die Hauptformationen mit Hilfe von ETM-Satellitenbildern zu identifizieren. Angewandt werden hierzu folgende Methoden: Colour Band Composite, Image Rationing und die sog. überwachte Klassifikation. Kapitel 3 enthält eine Beschreibung der strukturell bedingten Oberflächenformen, um die Wechselwirkung zwischen Tektonik und geomorphologischen Prozessen aufzuklären. Es geht es um die vielfältigen Methoden, zum Beispiel das sog. Image Processing, um die im Gebirgskörper vorhandenen Lineamente einwandfrei zu deuten. Spezielle Filtermethoden werden angewandt, um die wichtigsten Lineamente zu kartieren. Kapitel 4 stellt den Versuch dar, mit Hilfe von aufbereiteten SRTM-Satellitenbildern eine automatisierte Erfassung des Gewässernetzes. Es wird ausführlich diskutiert, inwieweit bei diesen Arbeitsschritten die Qualität kleinmaßstäbiger SRTM-Satellitenbilder mit großmaßstäbigen topographischen Karten vergleichbar ist. Weiterhin werden hydrologische Parameter über eine qualitative und quantitative Analyse des Abflussregimes einzelner Wadis erfasst. Der Ursprung von Entwässerungssystemen wird auf der Basis geomorphologischer und geologischer Befunde interpretiert. Kapitel 5 befasst sich mit der Abschätzung der Gefahr episodischer Wadifluten. Die Wahrscheinlichkeit ihres jährlichen Auftretens bzw. des Auftretens starker Fluten im Abstand mehrerer Jahre wird in einer historischen Betrachtung bis 1921 zurückverfolgt. Die Bedeutung von Regentiefs, die sich über dem Roten Meer entwickeln, und die für eine Abflussbildung in Frage kommen, wird mit Hilfe der IDW-Methode (Inverse Distance Weighted) untersucht. Betrachtet werden außerdem weitere, regenbringende Wetterlagen mit Hilfe von Meteosat Infrarotbildern. Genauer betrachtet wird die Periode 1990-1997, in der kräftige, Wadifluten auslösende Regenfälle auftraten. Flutereignisse und Fluthöhe werden anhand von hydrographischen Daten (Pegelmessungen) ermittelt. Auch die Landnutzung und Siedlungsstruktur im Einzugsgebiet eines Wadis wird berücksichtigt. In Kapitel 6 geht es um die unterschiedlichen Küstenformen auf der Westseite des Roten Meeres zum Beispiel die Erosionsformen, Aufbauformen, untergetauchte Formen. Im abschließenden Teil geht es um die Stratigraphie und zeitliche Zuordnung von submarinen Terrassen auf Korallenriffen sowie den Vergleich mit anderen solcher Terrassen an der ägyptischen Rotmeerküste westlich und östlich der Sinai-Halbinsel.
Antarctic cloud spectral emission from ground-based measurements, a focus on far infrared signatures
Resumo:
The present work belongs to the PRANA project, the first extensive field campaign of observation of atmospheric emission spectra covering the Far InfraRed spectral region, for more than two years. The principal deployed instrument is REFIR-PAD, a Fourier transform spectrometer used by us to study Antarctic cloud properties. A dataset covering the whole 2013 has been analyzed and, firstly, a selection of good quality spectra is performed, using, as thresholds, radiance values in few chosen spectral regions. These spectra are described in a synthetic way averaging radiances in selected intervals, converting them into BTs and finally considering the differences between each pair of them. A supervised feature selection algorithm is implemented with the purpose to select the features really informative about the presence, the phase and the type of cloud. Hence, training and test sets are collected, by means of Lidar quick-looks. The supervised classification step of the overall monthly datasets is performed using a SVM. On the base of this classification and with the help of Lidar observations, 29 non-precipitating ice cloud case studies are selected. A single spectrum, or at most an average over two or three spectra, is processed by means of the retrieval algorithm RT-RET, exploiting some main IR window channels, in order to extract cloud properties. Retrieved effective radii and optical depths are analyzed, to compare them with literature studies and to evaluate possible seasonal trends. Finally, retrieval output atmospheric profiles are used as inputs for simulations, assuming two different crystal habits, with the aim to examine our ability to reproduce radiances in the FIR. Substantial mis-estimations are found for FIR micro-windows: a high variability is observed in the spectral pattern of simulation deviations from measured spectra and an effort to link these deviations to cloud parameters has been performed.
Resumo:
Understanding the canopy cover of an urban environment leads to better estimates of carbon storage and more informed management decisions by urban foresters. The most commonly used method for assessing urban forest cover type extent is ground surveys, which can be both timeconsuming and expensive. The analysis of aerial photos is an alternative method that is faster, cheaper, and can cover a larger number of sites, but may be less accurate. The objectives of this paper were (1) to compare three methods of cover type assessment for Los Angeles, CA: handdelineation of aerial photos in ArcMap, supervised classification of aerial photos in ERDAS Imagine, and ground-collected data using the Urban Forest Effects (UFORE) model protocol; (2) to determine how well remote sensing methods estimate carbon storage as predicted by the UFORE model; and (3) to explore the influence of tree diameter and tree density on carbon storage estimates. Four major cover types (bare ground, fine vegetation, coarse vegetation, and impervious surfaces) were determined from 348 plots (0.039 ha each) randomly stratified according to land-use. Hand-delineation was better than supervised classification at predicting ground-based measurements of cover type and UFORE model-predicted carbon storage. Most error in supervised classification resulted from shadow, which was interpreted as unknown cover type. Neither tree diameter or tree density per plot significantly affected the relationship between carbon storage and canopy cover. The efficiency of remote sensing rather than in situ data collection allows urban forest managers the ability to quickly assess a city and plan accordingly while also preserving their often-limited budget.
Resumo:
This article presents a probabilistic method for vehicle detection and tracking through the analysis of monocular images obtained from a vehicle-mounted camera. The method is designed to address the main shortcomings of traditional particle filtering approaches, namely Bayesian methods based on importance sampling, for use in traffic environments. These methods do not scale well when the dimensionality of the feature space grows, which creates significant limitations when tracking multiple objects. Alternatively, the proposed method is based on a Markov chain Monte Carlo (MCMC) approach, which allows efficient sampling of the feature space. The method involves important contributions in both the motion and the observation models of the tracker. Indeed, as opposed to particle filter-based tracking methods in the literature, which typically resort to observation models based on appearance or template matching, in this study a likelihood model that combines appearance analysis with information from motion parallax is introduced. Regarding the motion model, a new interaction treatment is defined based on Markov random fields (MRF) that allows for the handling of possible inter-dependencies in vehicle trajectories. As for vehicle detection, the method relies on a supervised classification stage using support vector machines (SVM). The contribution in this field is twofold. First, a new descriptor based on the analysis of gradient orientations in concentric rectangles is dened. This descriptor involves a much smaller feature space compared to traditional descriptors, which are too costly for real-time applications. Second, a new vehicle image database is generated to train the SVM and made public. The proposed vehicle detection and tracking method is proven to outperform existing methods and to successfully handle challenging situations in the test sequences.
Resumo:
The naïve Bayes approach is a simple but often satisfactory method for supervised classification. In this paper, we focus on the naïve Bayes model and propose the application of regularization techniques to learn a naïve Bayes classifier. The main contribution of the paper is a stagewise version of the selective naïve Bayes, which can be considered a regularized version of the naïve Bayes model. We call it forward stagewise naïve Bayes. For comparison’s sake, we also introduce an explicitly regularized formulation of the naïve Bayes model, where conditional independence (absence of arcs) is promoted via an L 1/L 2-group penalty on the parameters that define the conditional probability distributions. Although already published in the literature, this idea has only been applied for continuous predictors. We extend this formulation to discrete predictors and propose a modification that yields an adaptive penalization. We show that, whereas the L 1/L 2 group penalty formulation only discards irrelevant predictors, the forward stagewise naïve Bayes can discard both irrelevant and redundant predictors, which are known to be harmful for the naïve Bayes classifier. Both approaches, however, usually improve the classical naïve Bayes model’s accuracy.