987 resultados para Semantics
Resumo:
The World Wide Web provides plentiful contents for Web-based learning, but its hyperlink-based architecture connects Web resources for browsing freely rather than for effective learning. To support effective learning, an e-learning system should be able to discover and make use of the semantic communities and the emerging semantic relations in a dynamic complex network of learning resources. Previous graph-based community discovery approaches are limited in ability to discover semantic communities. This paper first suggests the Semantic Link Network (SLN), a loosely coupled semantic data model that can semantically link resources and derive out implicit semantic links according to a set of relational reasoning rules. By studying the intrinsic relationship between semantic communities and the semantic space of SLN, approaches to discovering reasoning-constraint, rule-constraint, and classification-constraint semantic communities are proposed. Further, the approaches, principles, and strategies for discovering emerging semantics in dynamic SLNs are studied. The basic laws of the semantic link network motion are revealed for the first time. An e-learning environment incorporating the proposed approaches, principles, and strategies to support effective discovery and learning is suggested.
Resumo:
Much research pursues machine intelligence through better representation of semantics. What is semantics? People in different areas view semantics from different facets although it accompanies interaction through civilization. Some researchers believe that humans have some innate structure in mind for processing semantics. Then, what the structure is like? Some argue that humans evolve a structure for processing semantics through constant learning. Then, how the process is like? Humans have invented various symbol systems to represent semantics. Can semantics be accurately represented? Turing machines are good at processing symbols according to algorithms designed by humans, but they are limited in ability to process semantics and to do active interaction. Super computers and high-speed networks do not help solve this issue as they do not have any semantic worldview and cannot reflect themselves. Can future cyber-society have some semantic images that enable machines and individuals (humans and agents) to reflect themselves and interact with each other with knowing social situation through time? This paper concerns these issues in the context of studying an interactive semantics for the future cyber-society. It firstly distinguishes social semantics from natural semantics, and then explores the interactive semantics in the category of social semantics. Interactive semantics consists of an interactive system and its semantic image, which co-evolve and influence each other. The semantic worldview and interactive semantic base are proposed as the semantic basis of interaction. The process of building and explaining semantic image can be based on an evolving structure incorporating adaptive multi-dimensional classification space and self-organized semantic link network. A semantic lens is proposed to enhance the potential of the structure and help individuals build and retrieve semantic images from different facets, abstraction levels and scales through time.
Resumo:
Ubiquitous computing requires lightweight approaches to coordinating tasks distributed across smart devices. We are currently developing a semantic workflow modelling approach that blends the proven robustness of XPDL with semantics to support proactive behaviour. We illustrate the potential of the model through an example based on mixing a dry martini.
Resumo:
Preserving and presenting the Bulgarian folklore heritage is a long-term commitment of scholars and researchers working in many areas. This article presents ontological model of the Bulgarian folklore knowledge, exploring knowledge technologies for presenting the semantics of the phenomena of our traditional culture. This model is a step to the development of the digital library for the “Bulgarian Folklore Heritage” virtual exposition which is a part of the “Knowledge Technologies for Creation of Digital Presentation and Significant Repositories of Folklore Heritage” project.
Resumo:
Dance videos are interesting and semantics-intensive. At the same time, they are the complex type of videos compared to all other types such as sports, news and movie videos. In fact, dance video is the one which is less explored by the researchers across the globe. Dance videos exhibit rich semantics such as macro features and micro features and can be classified into several types. Hence, the conceptual modeling of the expressive semantics of the dance videos is very crucial and complex. This paper presents a generic Dance Video Semantics Model (DVSM) in order to represent the semantics of the dance videos at different granularity levels, identified by the components of the accompanying song. This model incorporates both syntactic and semantic features of the videos and introduces a new entity type called, Agent, to specify the micro features of the dance videos. The instantiations of the model are expressed as graphs. The model is implemented as a tool using J2SE and JMF to annotate the macro and micro features of the dance videos. Finally examples and evaluation results are provided to depict the effectiveness of the proposed dance video model.
Resumo:
Sentiment analysis on Twitter has attracted much attention recently due to its wide applications in both, commercial and public sectors. In this paper we present SentiCircles, a lexicon-based approach for sentiment analysis on Twitter. Different from typical lexicon-based approaches, which offer a fixed and static prior sentiment polarities of words regardless of their context, SentiCircles takes into account the co-occurrence patterns of words in different contexts in tweets to capture their semantics and update their pre-assigned strength and polarity in sentiment lexicons accordingly. Our approach allows for the detection of sentiment at both entity-level and tweet-level. We evaluate our proposed approach on three Twitter datasets using three different sentiment lexicons to derive word prior sentiments. Results show that our approach significantly outperforms the baselines in accuracy and F-measure for entity-level subjectivity (neutral vs. polar) and polarity (positive vs. negative) detections. For tweet-level sentiment detection, our approach performs better than the state-of-the-art SentiStrength by 4-5% in accuracy in two datasets, but falls marginally behind by 1% in F-measure in the third dataset.
Resumo:
In this paper we propose an approach for cost-effective employing of semantic technologies to improve the efficiency of searching and browsing of digital artwork collections. It is based on a semi-automatic creation of a Topic Map-based virtual art gallery portal by using existing Topic Maps tools. Such a ‘cheap’ solution could enable small art museums or art-related educational programs that lack sufficient funding for software development and publication infrastructure to take advantage of the emerging semantic technologies. The proposed approach has been used for creating the WSSU Diggs Gallery Portal.
Resumo:
In the article, we have reviewed the means for visualization of syntax, semantics and source code for programming languages which support procedural and/or object-oriented paradigm. It is examined how the structure of the source code of the structural and object-oriented programming styles has influenced different approaches for their teaching. We maintain a thesis valid for the object-oriented programming paradigm, which claims that the activities for design and programming of classes are done by the same specialist, and the training of this specialist should include design as well as programming skills and knowledge for modeling of abstract data structures. We put the question how a high level of abstraction in the object-oriented paradigm should be presented in simple model in the design stage, so the complexity in the programming stage stay low and be easily learnable. We give answer to this question, by building models using the UML notation, as we take a concrete example from the teaching practice including programming techniques for inheritance and polymorphism.
Resumo:
Sentiment lexicons for sentiment analysis offer a simple, yet effective way to obtain the prior sentiment information of opinionated words in texts. However, words' sentiment orientations and strengths often change throughout various contexts in which the words appear. In this paper, we propose a lexicon adaptation approach that uses the contextual semantics of words to capture their contexts in tweet messages and update their prior sentiment orientations and/or strengths accordingly. We evaluate our approach on one state-of-the-art sentiment lexicon using three different Twitter datasets. Results show that the sentiment lexicons adapted by our approach outperform the original lexicon in accuracy and F-measure in two datasets, but give similar accuracy and slightly lower F-measure in one dataset.
Resumo:
This paper presents a vision for the future of the e-books which entails further development of technologies that will facilitate the creation and use of a new generation of "smart" books: e-books that are evolving, highly interactive, customisable, adaptable, intelligent, and furnished with a rich set of collaborative authoring and reading support services. The proposed set of tools will be integrated into an intelligent framework for collaborative book authoring and experiencing called SmartBook. The paper promotes the idea that the semantic technologies, intensively developed recently in connection with the Semantic Web initiative, can be incorporated in the book and become the key factor of making it "smarter".
Resumo:
Sentiment lexicons for sentiment analysis offer a simple, yet effective way to obtain the prior sentiment information of opinionated words in texts. However, words’ sentiment orientations and strengths often change throughout various contexts in which the words appear. In this paper, we propose a lexicon adaptation approach that uses the contextual semantics of words to capture their contexts in tweet messages and update their prior sentiment orientations and/or strengths accordingly. We evaluate our approach on one state-of-the-art sentiment lexicon using three different Twitter datasets. Results show that the sentiment lexicons adapted by our approach outperform the original lexicon in accuracy and F-measure in two datasets, but give similar accuracy and slightly lower F-measure in one dataset.
Resumo:
This article presents the principal results of the Ph.D. thesis A Novel Method for Content-Based Image Retrieval in Art Image Collections Utilizing Colour Semantics by Krassimira Ivanova (Institute of Mathematics and Informatics, BAS), successfully defended at Hasselt Uni-versity in Belgium, Faculty of Science, on 15 November 2011.
Resumo:
With the advent of GPS enabled smartphones, an increasing number of users is actively sharing their location through a variety of applications and services. Along with the continuing growth of Location-Based Social Networks (LBSNs), security experts have increasingly warned the public of the dangers of exposing sensitive information such as personal location data. Most importantly, in addition to the geographical coordinates of the user’s location, LBSNs allow easy access to an additional set of characteristics of that location, such as the venue type or popularity. In this paper, we investigate the role of location semantics in the identification of LBSN users. We simulate a scenario in which the attacker’s goal is to reveal the identity of a set of LBSN users by observing their check-in activity. We then propose to answer the following question: what are the types of venues that a malicious user has to monitor to maximize the probability of success? Conversely, when should a user decide whether to make his/her check-in to a location public or not? We perform our study on more than 1 million check-ins distributed over 17 urban regions of the United States. Our analysis shows that different types of venues display different discriminative power in terms of user identity, with most of the venues in the “Residence” category providing the highest re-identification success across the urban regions. Interestingly, we also find that users with a high entropy of their check-ins distribution are not necessarily the hardest to identify, suggesting that it is the collective behaviour of the users’ population that determines the complexity of the identification task, rather than the individual behaviour.
Resumo:
Funding For M.C., the major part of the work on this article was carried out while he was affiliated with the Interdisciplinary Centre for Security, Reliability and Trust at the University of Luxembourg. His research was supported by the National Research Fund, Luxembourg (LAAMI project), as well as by the Engineering and Physical Sciences Research Council (EPSRC, UK), grant ref. EP/J012084/1 (SAsSY project). For S.V., the major part of the work on this article was carried out while he was affiliated with the Computer Science and Communication Research Unit at the University of Luxembourg. He worked on this article during the tenure of an ERCIM Alain Bensoussan Fellowship Programme, which is supported by the Marie Curie Co-funding of Regional, National and International Programmes (COFUND) of the European Commission. During this time, he was also funded by the National Research Fund, Luxembourg. When finishing the work on this article, he was a CRNS researcher affiliated with CRIL
Resumo:
Funding For M.C., the major part of the work on this article was carried out while he was affiliated with the Interdisciplinary Centre for Security, Reliability and Trust at the University of Luxembourg. His research was supported by the National Research Fund, Luxembourg (LAAMI project), as well as by the Engineering and Physical Sciences Research Council (EPSRC, UK), grant ref. EP/J012084/1 (SAsSY project). For S.V., the major part of the work on this article was carried out while he was affiliated with the Computer Science and Communication Research Unit at the University of Luxembourg. He worked on this article during the tenure of an ERCIM Alain Bensoussan Fellowship Programme, which is supported by the Marie Curie Co-funding of Regional, National and International Programmes (COFUND) of the European Commission. During this time, he was also funded by the National Research Fund, Luxembourg. When finishing the work on this article, he was a CRNS researcher affiliated with CRIL