953 resultados para Semantic image analysis
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Aims: To establish the sensitivity and reliability of objective image analysis in direct comparison with subjective grading of bulbar hyperaemia. Methods: Images of the same eyes were captured with a range of bulbar hyperaemia caused by vasodilation. The progression was recorded and 45 images extracted. The images were objectively analysed on 14 occasions using previously validated edge-detection and colour-extraction techniques. They were also graded by 14 eye-care practitioners (ECPs) and 14 non-clinicians (NCb) using the Efron scale. Six ECPs repeated the grading on three separate occasions Results: Subjective grading was only able to differentiate images with differences in grade of 0.70-1.03 Efron units (sensitivity of 0.30-0.53), compared to 0,02-0.09 Efron units with objective techniques (sensitivity of 0.94-0.99). Significant differences were found between ECPs and individual repeats were also inconsistent (p<0.001). Objective analysis was 16x more reliable than subjective analysis. The NCLs used wider ranges of the scale but were more variable than ECPs, implying that training may have an effect on grading. Conclusions: Objective analysis may offer a new gold standard in anterior ocular examination, and should be developed further as a clinical research tool to allow more highly powered analysis, and to enhance the clinical monitoring of anterior eye disease.
Resumo:
Aim: To use previously validated image analysis techniques to determine the incremental nature of printed subjective anterior eye grading scales. Methods: A purpose designed computer program was written to detect edges using a 3 × 3 kernal and to extract colour planes in the selected area of an image. Annunziato and Efron pictorial, and CCLRU and Vistakon-Synoptik photographic grades of bulbar hyperaemia, palpebral hyperaemia roughness, and corneal staining were analysed. Results: The increments of the grading scales were best described by a quadratic rather than a linear function. Edge detection and colour extraction image analysis for bulbar hyperaemia (r2 = 0.35-0.99), palpebral hyperaemia (r2 = 0.71-0.99), palpebral roughness (r2 = 0.30-0.94), and corneal staining (r2 = 0.57-0.99) correlated well with scale grades, although the increments varied in magnitude and direction between different scales. Repeated image analysis measures had a 95% confidence interval of between 0.02 (colour extraction) and 0.10 (edge detection) scale units (on a 0-4 scale). Conclusion: The printed grading scales were more sensitive for grading features of low severity, but grades were not comparable between grading scales. Palpebral hyperaemia and staining grading is complicated by the variable presentations possible. Image analysis techniques are 6-35 times more repeatable than subjective grading, with a sensitivity of 1.2-2.8% of the scale.
Resumo:
Aim: To examine the use of image analysis to quantify changes in ocular physiology. Method: A purpose designed computer program was written to objectively quantify bulbar hyperaemia, tarsal redness, corneal staining and tarsal staining. Thresholding, colour extraction and edge detection paradigms were investigated. The repeatability (stability) of each technique to changes in image luminance was assessed. A clinical pictorial grading scale was analysed to examine the repeatability and validity of the chosen image analysis technique. Results: Edge detection using a 3 × 3 kernel was found to be the most stable to changes in image luminance (2.6% over a +60 to -90% luminance range) and correlated well with the CCLRU scale images of bulbar hyperaemia (r = 0.96), corneal staining (r = 0.85) and the staining of palpebral roughness (r = 0.96). Extraction of the red colour plane demonstrated the best correlation-sensitivity combination for palpebral hyperaemia (r = 0.96). Repeatability variability was <0.5%. Conclusions: Digital imaging, in conjunction with computerised image analysis, allows objective, clinically valid and repeatable quantification of ocular features. It offers the possibility of improved diagnosis and monitoring of changes in ocular physiology in clinical practice. © 2003 British Contact Lens Association. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
The given work is devoted to development of the computer-aided system of semantic text analysis of a technical specification. The purpose of this work is to increase efficiency of software engineering based on automation of semantic text analysis of a technical specification. In work it is offered and investigated the model of the analysis of the text of the technical project is submitted, the attribute grammar of a technical specification, intended for formalization of limited Russian is constructed with the purpose of analysis of offers of text of a technical specification, style features of the technical project as class of documents are considered, recommendations on preparation of text of a technical specification for the automated processing are formulated. The computer-aided system of semantic text analysis of a technical specification is considered. This system consists of the following subsystems: preliminary text processing, the syntactic and semantic analysis and construction of software models, storage of documents and interface.
Resumo:
The given work is devoted to development of the computer-aided system of semantic text analysis of a technical specification. The purpose of this work is to increase efficiency of software engineering based on automation of semantic text analysis of a technical specification. In work it is offered and investigated a technique of the text analysis of a technical specification is submitted, the expanded fuzzy attribute grammar of a technical specification, intended for formalization of limited Russian language is constructed with the purpose of analysis of offers of text of a technical specification, style features of the technical specification as class of documents are considered, recommendations on preparation of text of a technical specification for the automated processing are formulated. The computer-aided system of semantic text analysis of a technical specification is considered. This system consist of the following subsystems: preliminary text processing, the syntactic and semantic analysis and construction of software models, storage of documents and interface.
Resumo:
Lexicon-based approaches to Twitter sentiment analysis are gaining much popularity due to their simplicity, domain independence, and relatively good performance. These approaches rely on sentiment lexicons, where a collection of words are marked with fixed sentiment polarities. However, words' sentiment orientation (positive, neural, negative) and/or sentiment strengths could change depending on context and targeted entities. In this paper we present SentiCircle; a novel lexicon-based approach that takes into account the contextual and conceptual semantics of words when calculating their sentiment orientation and strength in Twitter. We evaluate our approach on three Twitter datasets using three different sentiment lexicons. Results show that our approach significantly outperforms two lexicon baselines. Results are competitive but inconclusive when comparing to state-of-art SentiStrength, and vary from one dataset to another. SentiCircle outperforms SentiStrength in accuracy on average, but falls marginally behind in F-measure. © 2014 Springer International Publishing.
Resumo:
Purpose: To investigate the use of MRIA for quantitative characterisation of subretinal fibrosis secondary to nAMD. Methods: MRIA images of the posterior pole were acquired over 4 months from 20 eyes including those with inactive subretinal fibrosis and those being treated with ranibizumab for nAMD. Changes in morphology of the macula affected by nAMD were modelled and reflectance spectra at the MRIA acquisition wavelengths (507, 525, 552, 585, 596, 611 and 650nm) were computed using Monte Carlo simulation. Quantitative indicators of fibrosis were derived by matching image spectra to the model spectra of known morphological properties. Results: The model spectra were comparable to the image spectra, both normal and pathological. The key morphological changes that the model associated with nAMD were gliosis of the IS-OS junction, decrease in retinal blood and decrease in RPE melanin. However, these changes were not specific to fibrosis and none of the quantitative indicators showed a unique association with the degree of fibrosis. Moderate correlations were found with the clinical assessment, but not with the treatment program. Conclusion: MRIA can distinguish subretinal fibrosis from healthy tissue. The methods used show high sensitivity but low specificity, being unable to distinguish scarring from other abnormalities like atrophy. Quantification of scarring was not achieved with the wavelengths used due to the complex structural changes to retinal tissues in the process of nAMD. Further studies, incorporating other wavelengths, will establish whether MRIA has a role in the assessment of subretinal fibrosis in the context of retinal and choroidal pathology
Resumo:
The objectives of this research are to analyze and develop a modified Principal Component Analysis (PCA) and to develop a two-dimensional PCA with applications in image processing. PCA is a classical multivariate technique where its mathematical treatment is purely based on the eigensystem of positive-definite symmetric matrices. Its main function is to statistically transform a set of correlated variables to a new set of uncorrelated variables over $\IR\sp{n}$ by retaining most of the variations present in the original variables.^ The variances of the Principal Components (PCs) obtained from the modified PCA form a correlation matrix of the original variables. The decomposition of this correlation matrix into a diagonal matrix produces a set of orthonormal basis that can be used to linearly transform the given PCs. It is this linear transformation that reproduces the original variables. The two-dimensional PCA can be devised as a two successive of one-dimensional PCA. It can be shown that, for an $m\times n$ matrix, the PCs obtained from the two-dimensional PCA are the singular values of that matrix.^ In this research, several applications for image analysis based on PCA are developed, i.e., edge detection, feature extraction, and multi-resolution PCA decomposition and reconstruction. ^
Resumo:
Edible oil is an important contaminant in water and wastewater. Oil droplets smaller than 40 μm may remain in effluent as an emulsion and combine with other contaminants in water. Coagulation/flocculation processes are used to remove oil droplets from water and wastewater. By adding a polymer at proper dose, small oil droplets can be flocculated and separated from water. The purpose of this study was to characterize and analyze the morphology of flocs and floc formation in edible oil-water emulsions by using microscopic image analysis techniques. The fractal dimension, concentration of polymer, effect of pH and temperature are investigated and analyzed to develop a fractal model of the flocs. Three types of edible oil (corn, olive, and sunflower oil) at concentrations of 600 ppm (by volume) were used to determine the optimum polymer dosage and effect of pH and temperature. To find the optimum polymer dose, polymer was added to the oil-water emulsions at concentration of 0.5, 1.0, 1.5, 2.0, 3.0 and 3.5 ppm (by volume). The clearest supernatants obtained from flocculation of corn, olive, and sunflower oil were achieved at polymer dosage of 3.0 ppm producing turbidities of 4.52, 12.90, and 13.10 NTU, respectively. This concentration of polymer was subsequently used to study the effect of pH and temperature on flocculation. The effect of pH was studied at pH 5, 7, 9, and 11 at 30°C. Microscopic image analysis was used to investigate the morphology of flocs in terms of fractal dimension, radius of oil droplets trapped in floc, floc size, and histograms of oil droplet distribution. Fractal dimension indicates the density of oil droplets captured in flocs. By comparison of fractal dimensions, pH was found to be one of the most important factors controlling droplet flocculation. Neutral pH or pH 7 showed the highest degree of flocculation, while acidic (pH 5) and basic pH (pH 9 and pH 11) showed low efficiency of flocculation. The fractal dimensions achieved from flocculation of corn, olive, and sunflower oil at pH 7 and temperature 30°C were 1.2763, 1.3592, and 1.4413, respectively. The effect of temperature was explored at temperatures 20°, 30°, and 40°C and pH 7. The results of flocculation of oil at pH 7 and different temperatures revealed that temperature significantly affected flocculation. The fractal dimension of flocs formed in corn, olive and sunflower oil emulsion at pH 7 and temperature 20°, 30°, and 40°C were 1.82, 1.28, 1.29, 1.62, 1.36, 1.42, 1.36, 1.44, and 1.28, respectively. After comparison of fractal dimension, radius of oil droplets captured, and floc length in each oil type, the optimal flocculation temperature was determined to be 30°C. ^