885 resultados para Semantic Publishing, Linked Data, Bibliometrics, Informetrics, Data Retrieval, Citations
Resumo:
Poster at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
With the increasing production of information from e-government initiatives, there is also the need to transform a large volume of unstructured data into useful information for society. All this information should be easily accessible and made available in a meaningful and effective way in order to achieve semantic interoperability in electronic government services, which is a challenge to be pursued by governments round the world. Our aim is to discuss the context of e-Government Big Data and to present a framework to promote semantic interoperability through automatic generation of ontologies from unstructured information found in the Internet. We propose the use of fuzzy mechanisms to deal with natural language terms and present some related works found in this area. The results achieved in this study are based on the architectural definition and major components and requirements in order to compose the proposed framework. With this, it is possible to take advantage of the large volume of information generated from e-Government initiatives and use it to benefit society.
Resumo:
L'Open Data, letteralmente “dati aperti”, è la corrente di pensiero (e il relativo “movimento”) che cerca di rispondere all'esigenza di poter disporre di dati legalmente “aperti”, ovvero liberamente re-usabili da parte del fruitore, per qualsiasi scopo. L’obiettivo dell’Open Data può essere raggiunto per legge, come negli USA dove l’informazione generata dal settore pubblico federale è in pubblico dominio, oppure per scelta dei detentori dei diritti, tramite opportune licenze. Per motivare la necessità di avere dei dati in formato aperto, possiamo usare una comparazione del tipo: l'Open Data sta al Linked Data, come la rete Internet sta al Web. L'Open Data, quindi, è l’infrastruttura (o la “piattaforma”) di cui il Linked Data ha bisogno per poter creare la rete di inferenze tra i vari dati sparsi nel Web. Il Linked Data, in altre parole, è una tecnologia ormai abbastanza matura e con grandi potenzialità, ma ha bisogno di grandi masse di dati tra loro collegati, ossia “linkati”, per diventare concretamente utile. Questo, in parte, è già stato ottenuto ed è in corso di miglioramento, grazie a progetti come DBpedia o FreeBase. In parallelo ai contributi delle community online, un altro tassello importante – una sorta di “bulk upload” molto prezioso – potrebbe essere dato dalla disponibilità di grosse masse di dati pubblici, idealmente anche già linkati dalle istituzioni stesse o comunque messi a disposizione in modo strutturato – che aiutino a raggiungere una “massa” di Linked Data. A partire dal substrato, rappresentato dalla disponibilità di fatto dei dati e dalla loro piena riutilizzabilità (in modo legale), il Linked Data può offrire una potente rappresentazione degli stessi, in termini di relazioni (collegamenti): in questo senso, Linked Data ed Open Data convergono e raggiungono la loro piena realizzazione nell’approccio Linked Open Data. L’obiettivo di questa tesi è quello di approfondire ed esporre le basi sul funzionamento dei Linked Open Data e gli ambiti in cui vengono utilizzati.
Resumo:
It is a challenge to measure the impact of releasing data to the public since the effects may not be directly linked to particular open data activities or substantial impact may only occur several years after publishing the data. This paper proposes a framework to assess the impact of releasing open data by applying the Social Return on Investment (SROI) approach. SROI was developed for organizations intended to generate social and environmental benefits thus fitting the purpose of most open data initiatives. We link the four steps of SROI (input, output, outcome, impact) with the 14 high-value data categories of the G8 Open Data Charter to create a matrix of open data examples, activities, and impacts in each of the data categories. This Impact Monitoring Framework helps data providers to navigate the impact space of open data laying out the conceptual basis for further research.
Resumo:
The Web has witnessed an enormous growth in the amount of semantic information published in recent years. This growth has been stimulated to a large extent by the emergence of Linked Data. Although this brings us a big step closer to the vision of a Semantic Web, it also raises new issues such as the need for dealing with information expressed in different natural languages. Indeed, although the Web of Data can contain any kind of information in any language, it still lacks explicit mechanisms to automatically reconcile such information when it is expressed in different languages. This leads to situations in which data expressed in a certain language is not easily accessible to speakers of other languages. The Web of Data shows the potential for being extended to a truly multilingual web as vocabularies and data can be published in a language-independent fashion, while associated language-dependent (linguistic) information supporting the access across languages can be stored separately. In this sense, the multilingual Web of Data can be realized in our view as a layer of services and resources on top of the existing Linked Data infrastructure adding i) linguistic information for data and vocabularies in different languages, ii) mappings between data with labels in different languages, and iii) services to dynamically access and traverse Linked Data across different languages. In this article we present this vision of a multilingual Web of Data. We discuss challenges that need to be addressed to make this vision come true and discuss the role that techniques such as ontology localization, ontology mapping, and cross-lingual ontology-based information access and presentation will play in achieving this. Further, we propose an initial architecture and describe a roadmap that can provide a basis for the implementation of this vision.
Resumo:
The Semantic Web is growing at a fast pace, recently boosted by the creation of the Linked Data initiative and principles. Methods, standards, techniques and the state of technology are becoming more mature and therefore are easing the task of publication and consumption of semantic information on the Web.
Resumo:
The uptake of Linked Data (LD) has promoted the proliferation of datasets and their associated ontologies bringing their semantic to the data being published. These ontologies should be evaluated at different stages, both during their development and their publication. As important as correctly modelling the intended part of the world to be captured in an ontology, is publishing, sharing and facilitating the (re)use of the obtained model. In this paper, 11 evaluation characteristics, with respect to publish, share and facilitate the reuse, are proposed. In particular, 6 good practices and 5 pitfalls are presented, together with their associated detection methods. In addition, a grid-based rating system is generated. Both contributions, the set of evaluation characteristics and the grid system, could be useful for ontologists in order to reuse existing LD vocabularies or to check the one being built.
Resumo:
There are several different standardised and widespread formats to represent emotions. However, there is no standard semantic model yet. This paper presents a new ontology, called Onyx, that aims to become such a standard while adding concepts from the latest Semantic Web models. In particular, the ontology focuses on the representation of Emotion Analysis results. But the model is abstract and inherits from previous standards and formats. It can thus be used as a reference representation of emotions in any future application or ontology. To prove this, we have translated resources from EmotionML representation to Onyx. We also present several ways in which developers could benefit from using this ontology instead of an ad-hoc presentation. Our ultimate goal is to foster the use of semantic technologies for emotion Analysis while following the Linked Data ideals.
Resumo:
The Web of Data currently comprises ? 62 billion triples from more than 2,000 different datasets covering many fields of knowledge3. This volume of structured Linked Data can be seen as a particular case of Big Data, referred to as Big Semantic Data [4]. Obviously, powerful computational configurations are tradi- tionally required to deal with the scalability problems arising to Big Semantic Data. It is not surprising that this ?data revolution? has competed in parallel with the growth of mobile computing. Smartphones and tablets are massively used at the expense of traditional computers but, to date, mobile devices have more limited computation resources. Therefore, one question that we may ask ourselves would be: can (potentially large) semantic datasets be consumed natively on mobile devices? Currently, only a few mobile apps (e.g., [1, 9, 2, 8]) make use of semantic data that they store in the mobile devices, while many others access existing SPARQL endpoints or Linked Data directly. Two main reasons can be considered for this fact. On the one hand, in spite of some initial approaches [6, 3], there are no well-established triplestores for mobile devices. This is an important limitation because any po- tential app must assume both RDF storage and SPARQL resolution. On the other hand, the particular features of these devices (little storage space, less computational power or more limited bandwidths) limit the adoption of seman- tic data for different uses and purposes. This paper introduces our HDTourist mobile application prototype. It con- sumes urban data from DBpedia4 to help tourists visiting a foreign city. Although it is a simple app, its functionality allows illustrating how semantic data can be stored and queried with limited resources. Our prototype is implemented for An- droid, but its foundations, explained in Section 2, can be deployed in any other platform. The app is described in Section 3, and Section 4 concludes about our current achievements and devises the future work.
Resumo:
Retrieving large amounts of information over wide area networks, including the Internet, is problematic due to issues arising from latency of response, lack of direct memory access to data serving resources, and fault tolerance. This paper describes a design pattern for solving the issues of handling results from queries that return large amounts of data. Typically these queries would be made by a client process across a wide area network (or Internet), with one or more middle-tiers, to a relational database residing on a remote server. The solution involves implementing a combination of data retrieval strategies, including the use of iterators for traversing data sets and providing an appropriate level of abstraction to the client, double-buffering of data subsets, multi-threaded data retrieval, and query slicing. This design has recently been implemented and incorporated into the framework of a commercial software product developed at Oracle Corporation.
Resumo:
Short text messages a.k.a Microposts (e.g. Tweets) have proven to be an effective channel for revealing information about trends and events, ranging from those related to Disaster (e.g. hurricane Sandy) to those related to Violence (e.g. Egyptian revolution). Being informed about such events as they occur could be extremely important to authorities and emergency professionals by allowing such parties to immediately respond. In this work we study the problem of topic classification (TC) of Microposts, which aims to automatically classify short messages based on the subject(s) discussed in them. The accurate TC of Microposts however is a challenging task since the limited number of tokens in a post often implies a lack of sufficient contextual information. In order to provide contextual information to Microposts, we present and evaluate several graph structures surrounding concepts present in linked knowledge sources (KSs). Traditional TC techniques enrich the content of Microposts with features extracted only from the Microposts content. In contrast our approach relies on the generation of different weighted semantic meta-graphs extracted from linked KSs. We introduce a new semantic graph, called category meta-graph. This novel meta-graph provides a more fine grained categorisation of concepts providing a set of novel semantic features. Our findings show that such category meta-graph features effectively improve the performance of a topic classifier of Microposts. Furthermore our goal is also to understand which semantic feature contributes to the performance of a topic classifier. For this reason we propose an approach for automatic estimation of accuracy loss of a topic classifier on new, unseen Microposts. We introduce and evaluate novel topic similarity measures, which capture the similarity between the KS documents and Microposts at a conceptual level, considering the enriched representation of these documents. Extensive evaluation in the context of Emergency Response (ER) and Violence Detection (VD) revealed that our approach outperforms previous approaches using single KS without linked data and Twitter data only up to 31.4% in terms of F1 measure. Our main findings indicate that the new category graph contains useful information for TC and achieves comparable results to previously used semantic graphs. Furthermore our results also indicate that the accuracy of a topic classifier can be accurately predicted using the enhanced text representation, outperforming previous approaches considering content-based similarity measures. © 2014 Elsevier B.V. All rights reserved.
Resumo:
The Electronic Product Code Information Service (EPCIS) is an EPCglobal standard, that aims to bridge the gap between the physical world of RFID1 tagged artifacts, and information systems that enable their tracking and tracing via the Electronic Product Code (EPC). Central to the EPCIS data model are "events" that describe specific occurrences in the supply chain. EPCIS events, recorded and registered against EPC tagged artifacts, encapsulate the "what", "when", "where" and "why" of these artifacts as they flow through the supply chain. In this paper we propose an ontological model for representing EPCIS events on the Web of data. Our model provides a scalable approach for the representation, integration and sharing of EPCIS events as linked data via RESTful interfaces, thereby facilitating interoperability, collaboration and exchange of EPC related data across enterprises on a Web scale.
Resumo:
Nearest neighbour collaborative filtering (NNCF) algorithms are commonly used in multimedia recommender systems to suggest media items based on the ratings of users with similar preferences. However, the prediction accuracy of NNCF algorithms is affected by the reduced number of items – the subset of items co-rated by both users – typically used to determine the similarity between pairs of users. In this paper, we propose a different approach, which substantially enhances the accuracy of the neighbour selection process – a user-based CF (UbCF) with semantic neighbour discovery (SND). Our neighbour discovery methodology, which assesses pairs of users by taking into account all the items rated at least by one of the users instead of just the set of co-rated items, semantically enriches this enlarged set of items using linked data and, finally, applies the Collinearity and Proximity Similarity metric (CPS), which combines the cosine similarity with Chebyschev distance dissimilarity metric. We tested the proposed SND against the Pearson Correlation neighbour discovery algorithm off-line, using the HetRec data set, and the results show a clear improvement in terms of accuracy and execution time for the predicted recommendations.
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.