826 resultados para Self-organizing model


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Comunicación presentada en el 2nd International Workshop on Pattern Recognition in Information Systems, Alicante, April, 2002.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Customizing shoe manufacturing is one of the great challenges in the footwear industry. It is a production model change where design adopts not only the main role, but also the main bottleneck. It is therefore necessary to accelerate this process by improving the accuracy of current methods. Rapid prototyping techniques are based on the reuse of manufactured footwear lasts so that they can be modified with CAD systems leading rapidly to new shoe models. In this work, we present a shoe last fast reconstruction method that fits current design and manufacturing processes. The method is based on the scanning of shoe last obtaining sections and establishing a fixed number of landmarks onto those sections to reconstruct the shoe last 3D surface. Automated landmark extraction is accomplished through the use of the self-organizing network, the growing neural gas (GNG), which is able to topographically map the low dimensionality of the network to the high dimensionality of the contour manifold without requiring a priori knowledge of the input space structure. Moreover, our GNG landmark method is tolerant to noise and eliminates outliers. Our method accelerates up to 12 times the surface reconstruction and filtering processes used by the current shoe last design software. The proposed method offers higher accuracy compared with methods with similar efficiency as voxel grid.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

"Translation of the ... collection of reports" [entitled]: Print︠s︡ipy postroenii︠a︡ samoobuchaiushchikhsia sistem (romanized form) Kiev, 1962.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Latent variable models represent the probability density of data in a space of several dimensions in terms of a smaller number of latent, or hidden, variables. A familiar example is factor analysis which is based on a linear transformations between the latent space and the data space. In this paper we introduce a form of non-linear latent variable model called the Generative Topographic Mapping, for which the parameters of the model can be determined using the EM algorithm. GTM provides a principled alternative to the widely used Self-Organizing Map (SOM) of Kohonen (1982), and overcomes most of the significant limitations of the SOM. We demonstrate the performance of the GTM algorithm on a toy problem and on simulated data from flow diagnostics for a multi-phase oil pipeline.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Latent variable models represent the probability density of data in a space of several dimensions in terms of a smaller number of latent, or hidden, variables. A familiar example is factor analysis which is based on a linear transformations between the latent space and the data space. In this paper we introduce a form of non-linear latent variable model called the Generative Topographic Mapping, for which the parameters of the model can be determined using the EM algorithm. GTM provides a principled alternative to the widely used Self-Organizing Map (SOM) of Kohonen (1982), and overcomes most of the significant limitations of the SOM. We demonstrate the performance of the GTM algorithm on a toy problem and on simulated data from flow diagnostics for a multi-phase oil pipeline.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Generative Topographic Mapping (GTM) algorithm of Bishop et al. (1997) has been introduced as a principled alternative to the Self-Organizing Map (SOM). As well as avoiding a number of deficiencies in the SOM, the GTM algorithm has the key property that the smoothness properties of the model are decoupled from the reference vectors, and are described by a continuous mapping from a lower-dimensional latent space into the data space. Magnification factors, which are approximated by the difference between code-book vectors in SOMs, can therefore be evaluated for the GTM model as continuous functions of the latent variables using the techniques of differential geometry. They play an important role in data visualization by highlighting the boundaries between data clusters, and are illustrated here for both a toy data set, and a problem involving the identification of crab species from morphological data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The generative topographic mapping (GTM) model was introduced by Bishop et al. (1998, Neural Comput. 10(1), 215-234) as a probabilistic re- formulation of the self-organizing map (SOM). It offers a number of advantages compared with the standard SOM, and has already been used in a variety of applications. In this paper we report on several extensions of the GTM, including an incremental version of the EM algorithm for estimating the model parameters, the use of local subspace models, extensions to mixed discrete and continuous data, semi-linear models which permit the use of high-dimensional manifolds whilst avoiding computational intractability, Bayesian inference applied to hyper-parameters, and an alternative framework for the GTM based on Gaussian processes. All of these developments directly exploit the probabilistic structure of the GTM, thereby allowing the underlying modelling assumptions to be made explicit. They also highlight the advantages of adopting a consistent probabilistic framework for the formulation of pattern recognition algorithms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis describes the Generative Topographic Mapping (GTM) --- a non-linear latent variable model, intended for modelling continuous, intrinsically low-dimensional probability distributions, embedded in high-dimensional spaces. It can be seen as a non-linear form of principal component analysis or factor analysis. It also provides a principled alternative to the self-organizing map --- a widely established neural network model for unsupervised learning --- resolving many of its associated theoretical problems. An important, potential application of the GTM is visualization of high-dimensional data. Since the GTM is non-linear, the relationship between data and its visual representation may be far from trivial, but a better understanding of this relationship can be gained by computing the so-called magnification factor. In essence, the magnification factor relates the distances between data points, as they appear when visualized, to the actual distances between those data points. There are two principal limitations of the basic GTM model. The computational effort required will grow exponentially with the intrinsic dimensionality of the density model. However, if the intended application is visualization, this will typically not be a problem. The other limitation is the inherent structure of the GTM, which makes it most suitable for modelling moderately curved probability distributions of approximately rectangular shape. When the target distribution is very different to that, theaim of maintaining an `interpretable' structure, suitable for visualizing data, may come in conflict with the aim of providing a good density model. The fact that the GTM is a probabilistic model means that results from probability theory and statistics can be used to address problems such as model complexity. Furthermore, this framework provides solid ground for extending the GTM to wider contexts than that of this thesis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Data visualization algorithms and feature selection techniques are both widely used in bioinformatics but as distinct analytical approaches. Until now there has been no method of measuring feature saliency while training a data visualization model. We derive a generative topographic mapping (GTM) based data visualization approach which estimates feature saliency simultaneously with the training of the visualization model. The approach not only provides a better projection by modeling irrelevant features with a separate noise model but also gives feature saliency values which help the user to assess the significance of each feature. We compare the quality of projection obtained using the new approach with the projections from traditional GTM and self-organizing maps (SOM) algorithms. The results obtained on a synthetic and a real-life chemoinformatics dataset demonstrate that the proposed approach successfully identifies feature significance and provides coherent (compact) projections. © 2006 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Self-attention research has demonstrated a relationship between dispositional self-focus, anxiety proneness and fear arousal. In addition, the effect of self-focus manipulations on approach-avoidance tasks involving a feared stimulus are strikingly similar to the effects obtained from manipulation of other cognitive factors such as perceived self-efficacy. A number of experiments were designed to explore the relationship between self-focused attention and ffilxiety. Data from the experiments demonstrate that self-attention influences a variety of cognitive variables which have been considered as central factors in anxiety. Concomitants of self-focus are increased awareness of physiological arousal and overestimation of such arousal, the identification of self-discrepancies, cognitive failures and performance deficits and the activation of physical threat concepts in memory. These factors are conceptualised as central in the negative evaluation of physiological arousal and coping resources in anxiety. Clinically anxious individuals typically have high scores in dispositional self-consciousness and body-consciousness. In patients suffering from generalised anxiety or panic disorders maladaptive self-focusing tendencies can be related to specific life stressors which render aspects of the self salient. An analysis of the ideational component of anxiety revealed three subcomponents; negative social ideation (worry about other people's reaction to the self), negative somatic ideation (worry about physical symptoms and health) and obsessional ideation (the experience of uncontrollable and repetitive thoughts) which were differentially associated with measures of dispositional self-focus. The frequency and content of an.xious w-orry is associated with specific self-focusing tendencies. It is proposed that the 'attentional style' of the individual is an important determinant of the nature and intensity of their affective response in a threatening situation. A self-attentional model of anxiety is proposed and the complex interaction between self-focus and other cognitive factors in anxiety such as appraisal of arousal and coping resources and perceived levels of self-efficacy is discussed. The model presents new directions for research and therapeutic intervention in anxiety.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In 2007 the UK Office of Government Commerce was mandated to carry out Procurement Capability Reviews (PCR) across the 16 top spending UK Government Departments. Since then, this programme has evolved into a self assessment based approach which is markedly different from the original approach. Will the move from a centre-led strategic review of procurement capability to a department-led model based on self assessment continue to strengthen and improve procurement capability across Central Civil Government? OGC is currently working with UK Government Departments to carry out their PCRs using a self-assessment tool which incorporates qualitative and quantitative measures. Results are generated based on a capability maturity model. The results are assured independently. OGC expectations are that tangible and measurable capability improvements will be realised when departments embed the self-assessment model and implement the findings as part of a continuous improvement regime. This paper is a case study, using some relevant literature to reflect on past and possible future development of the PCR self assessment scheme.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Self-awareness and self-expression are promising architectural concepts for embedded systems to be equipped with to match them with dedicated application scenarios and constraints in the avionic and space-flight industry. Typically, these systems operate in largely undefined environments and are not reachable after deployment for a long time or even never ever again. This paper introduces a reference architecture as well as a novel modelling and simulation environment for self-aware and self-expressive systems with transaction level modelling, simulation and detailed modelling capabilities for hardware aspects, precise process chronology execution as well as fine timing resolutions. Furthermore, industrial relevant system sizes with several self-aware and self-expressive nodes can be handled by the modelling and simulation environment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Novel computing systems are increasingly being composed of large numbers of heterogeneous components, each with potentially different goals or local perspectives, and connected in networks which change over time. Management of such systems quickly becomes infeasible for humans. As such, future computing systems should be able to achieve advanced levels of autonomous behaviour. In this context, the system's ability to be self-aware and be able to self-express becomes important. This paper surveys definitions and current understanding of self-awareness and self-expression in biology and cognitive science. Subsequently, previous efforts to apply these concepts to computing systems are described. This has enabled the development of novel working definitions for self-awareness and self-expression within the context of computing systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Neural Networks have been successfully employed in different biomedical settings. They have been useful for feature extractions from images and biomedical data in a variety of diagnostic applications. In this paper, they are applied as a diagnostic tool for classifying different levels of gastric electrical uncoupling in controlled acute experiments on dogs. Data was collected from 16 dogs using six bipolar electrodes inserted into the serosa of the antral wall. Each dog underwent three recordings under different conditions: (1) basal state, (2) mild surgically-induced uncoupling, and (3) severe surgically-induced uncoupling. For each condition half-hour recordings were made. The neural network was implemented according to the Learning Vector Quantization model. This is a supervised learning model of the Kohonen Self-Organizing Maps. Majority of the recordings collected from the dogs were used for network training. Remaining recordings served as a testing tool to examine the validity of the training procedure. Approximately 90% of the dogs from the neural network training set were classified properly. However, only 31% of the dogs not included in the training process were accurately diagnosed. The poor neural-network based diagnosis of recordings that did not participate in the training process might have been caused by inappropriate representation of input data. Previous research has suggested characterizing signals according to certain features of the recorded data. This method, if employed, would reduce the noise and possibly improve the diagnostic abilities of the neural network.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

When visual sensor networks are composed of cameras which can adjust the zoom factor of their own lens, one must determine the optimal zoom levels for the cameras, for a given task. This gives rise to an important trade-off between the overlap of the different cameras’ fields of view, providing redundancy, and image quality. In an object tracking task, having multiple cameras observe the same area allows for quicker recovery, when a camera fails. In contrast having narrow zooms allow for a higher pixel count on regions of interest, leading to increased tracking confidence. In this paper we propose an approach for the self-organisation of redundancy in a distributed visual sensor network, based on decentralised multi-objective online learning using only local information to approximate the global state. We explore the impact of different zoom levels on these trade-offs, when tasking omnidirectional cameras, having perfect 360-degree view, with keeping track of a varying number of moving objects. We further show how employing decentralised reinforcement learning enables zoom configurations to be achieved dynamically at runtime according to an operator’s preference for maximising either the proportion of objects tracked, confidence associated with tracking, or redundancy in expectation of camera failure. We show that explicitly taking account of the level of overlap, even based only on local knowledge, improves resilience when cameras fail. Our results illustrate the trade-off between maintaining high confidence and object coverage, and maintaining redundancy, in anticipation of future failure. Our approach provides a fully tunable decentralised method for the self-organisation of redundancy in a changing environment, according to an operator’s preferences.