944 resultados para Self-organized molecular films
Resumo:
We analyze long-range time correlations and self-similar characteristics of the electrostatic turbulence at the plasma edge and scrape-off layer in the Tokamak Chauffage Alfven Bresillien (TCABR), with low and high Magnetohydrodynamics (MHD) activity. We find evidence of self-organized criticality (SOC), mainly in the region near the tokamak limiter. Comparative analyses of data before and during the MHD activity reveals that during the high mHD activity the Hurst parameter decreases. Finally, we present a cellular automaton whose parameters are adjusted to simulate the analyzed turbulence SOC change with the MHD activity variation. (C) 2011 Published by Elsevier B.V.
Resumo:
Nanotechnology entails the manufacturing and manipulation of matter at length scales ranging from single atoms to micron-sized objects. The ability to address properties on the biologically-relevant nanometer scale has made nanotechnology attractive for Nanomedicine. This is perceived as a great opportunity in healthcare especially in diagnostics, therapeutics and more in general to develop personalized medicine. Nanomedicine has the potential to enable early detection and prevention, and to improve diagnosis, mass screening, treatment and follow-up of many diseases. From the biological standpoint, nanomaterials match the typical size of naturally occurring functional units or components of living organisms and, for this reason, enable more effective interaction with biological systems. Nanomaterials have the potential to influence the functionality and cell fate in the regeneration of organs and tissues. To this aim, nanotechnology provides an arsenal of techniques for intervening, fabricate, and modulate the environment where cells live and function. Unconventional micro- and nano-fabrication techniques allow patterning biomolecules and biocompatible materials down to the level of a few nanometer feature size. Patterning is not simply a deterministic placement of a material; in a more extended acception it allows a controlled fabrication of structures and gradients of different nature. Gradients are emerging as one of the key factors guiding cell adhesion, proliferation, migration and even differentiation in the case of stem cells. The main goal of this thesis has been to devise a nanotechnology-based strategy and tools to spatially and temporally control biologically-relevant phenomena in-vitro which are important in some fields of medical research.
Intentionally in non-equilibrium systems? The functional aspects of self-organized pattern formation
Resumo:
We investigated the defensive behavior of honeybees under controlled experimental conditions. During an attack on two identical targets, the spatial distribution of stings varied as a function of the total number of stings, evincing the classic “pitchfork bifurcation” phenomenon of nonlinear dynamics. The experimental results support a model of defensive behavior based on a self-organizing mechanism. The model helps to explain several of the characteristic features of the honeybee defensive response: (i) the ability of the colony to localize and focus its attack, (ii) the strong variability between different hives in the intensity of attack, as well as (iii) the variability observed within the same hive, and (iv) the ability of the colony to amplify small differences between the targets.
Self-organized phase transitions in neural networks as a neural mechanism of information processing.
Resumo:
Transitions between dynamically stable activity patterns imposed on an associative neural network are shown to be induced by self-organized infinitesimal changes in synaptic connection strength and to be a kind of phase transition. A key event for the neural process of information processing in a population coding scheme is transition between the activity patterns encoding usual entities. We propose that the infinitesimal and short-term synaptic changes based on the Hebbian learning rule are the driving force for the transition. The phase transition between the following two dynamical stable states is studied in detail, the state where the firing pattern is changed temporally so as to itinerate among several patterns and the state where the firing pattern is fixed to one of several patterns. The phase transition from the pattern itinerant state to a pattern fixed state may be induced by the Hebbian learning process under a weak input relevant to the fixed pattern. The reverse transition may be induced by the Hebbian unlearning process without input. The former transition is considered as recognition of the input stimulus, while the latter is considered as clearing of the used input data to get ready for new input. To ensure that information processing based on the phase transition can be made by the infinitesimal and short-term synaptic changes, it is absolutely necessary that the network always stays near the critical state corresponding to the phase transition point.
Resumo:
We present an overview of the statistical mechanics of self-organized criticality. We focus on the successes and failures of hydrodynamic description of transport, which consists of singular diffusion equations. When this description applies, it can predict the scaling features associated with these systems. We also identify a hard driving regime where singular diffusion hydrodynamics fails due to fluctuations and give an explicit criterion for when this failure occurs.
Resumo:
We present a simple mathematical model of biological macroevolution. The model describes an ecology of adapting, interacting species. The environment of any given species is affected by other evolving species; hence, it is not constant in time. The ecology as a whole evolves to a "self-organized critical" state where periods of stasis alternate with avalanches of causally connected evolutionary changes. This characteristic behavior of natural history, known as "punctuated equilibrium," thus finds a theoretical explanation as a self-organized critical phenomenon. The evolutionary behavior of single species is intermittent. Also, large bursts of apparently simultaneous evolutionary activity require no external cause. Extinctions of all sizes, including mass extinctions, may be a simple consequence of ecosystem dynamics. Our results are compared with data from the fossil record.
Resumo:
Mode of access: Internet.
Resumo:
The paper explores the functionalities of eight start pages and considers their usefulness when used as a mashable platform for deployment of personal learning environments (PLE) for self-organized learners. The Web 2.0 effects and eLearning 2.0 strategies are examined from the point of view of how they influence the methods of gathering and capturing data, information and knowledge, and the learning process. Mashup technology is studied in order to see what kind of components can be used in PLE realization. A model of a PLE for self-organized learners is developed and it is used to prototype a personal learning and research environment in the start pages Netvibes, Pageflakes and iGoogle.
Resumo:
Self-assembled monolayers of 1-teradecanethiol on gold were characterized by means of FTIR-ATR measurements, XPS and contact angle measurements. Linear dichroism measurements using FTIR-ATR are used to estimate the orientation of the alkyl chains. An equation for calculating the orientation angles of the alkyls chains was deduced. (C) 1998 Elsevier Science Limited. All rights reserved.
Resumo:
The increasing interest in nanoscience and nanotechnology has prompted intense investigations into appropriate fabrication techniques. Self-organized, bottom-up growth of nanomaterials using plasma nanofabrication techniques1–10 has proven to be one of the most promising approaches for the construction of precisely tailored nanostructures (i.e., quantum dots,11–13 nanotubes,14–17 nanowires,18–20 etc.) arrays. Thus the primary aim of this chapter is to show how plasmas may be used to achieve a high level of control during the self-organized growth of a range of nanomaterials, from zero-dimensional quantum dots (Section 15.2) to one- and two-dimensional nanomaterials (Section 15.3) to nanostructured films (Section 15.4)...
Resumo:
Recently, halogen···halogen interactions have been demonstrated to stabilize two-dimensional supramolecular assemblies at the liquid–solid interface. Here we study the effect of changing the halogen, and report on the 2D supramolecular structures obtained by the adsorption of 2,4,6-tris(4-bromophenyl)-1,3,5-triazine (TBPT) and 2,4,6-tris(4-iodophenyl)-1,3,5-triazine (TIPT) on both highly oriented pyrolytic graphite and the (111) facet of a gold single crystal. These molecular systems were investigated by combining room-temperature scanning tunneling microscopy in ambient conditions with density functional theory, and are compared to results reported in the literature for the similar molecules 1,3,5-tri(4-bromophenyl)benzene (TBPB) and 1,3,5-tri(4-iodophenyl)benzene (TIPB). We find that the substrate exerts a much stronger effect than the nature of the halogen atoms in the molecular building blocks. Our results indicate that the triazine core, which renders TBPT and TIPT stiff and planar, leads to stronger adsorption energies and hence structures that are different from those found for TBPB and TIPB. On the reconstructed Au(111) surface we find that the TBPT network is sensitive to the fcc- and hcp-stacked regions, indicating a significant substrate effect. This makes TBPT the first molecule reported to form a continuous monolayer at room temperature in which molecular packing is altered on the differently reconstructed regions of the Au(111) surface. Solvent-dependent polymorphs with solvent coadsorption were observed for TBPT on HOPG. This is the first example of a multicomponent self-assembled molecular networks involving the rare cyclic, hydrogen-bonded hexamer of carboxylic groups, R66(24) synthon.