975 resultados para Selectivity
Resumo:
Despite 3 decades of focused chemical, biological, structural, and clinical developments, unusual properties of somatostatin (SRIF, 1) analogues are still being uncovered. Here we report the unexpected functional properties of 1 and the octapeptide cyclo(3-14)H-Cys-Phe-Phe-Trp(8)-Lys-Thr-Phe-Cys-OH (somatostatin numbering; OLT-8, 9) substituted by imBzl-l- or -d-His at position 8. These analogues were tested for their binding affinity to the five human somatostatin receptors (sst(1-5)), as well as for their functional properties (or functionalities) in an sst(3) internalization assay and in an sst(3) luciferase reporter gene assay. While substitution of Trp(8) in somatostatin by imBzl-l- or -d-His(8) results in sst(3) selectivity, substitution of Trp(8) in the octapeptide 9 by imBzl-l- or -d-His(8) results in loss of binding affinity for sst(1,2,4,5) and a radical functional switch from agonist to antagonist.
Resumo:
"We present a combined in vitro/in silico study to determine the molecular origin of the selectivity of a-tocopherol transfer" "protein (a-TTP) towards a-tocopherol. Molecular dynamics simulations combined to free energy perturbation calculations predict a binding free energy for a-tocopherol to a-TTP 8.26+2.13 kcal mol{1 lower than that of c-tocopherol. Our calculations show that c-tocopherol binds to a-TTP in a significantly distorted geometry as compared to that of the natural ligand. Variations in the hydration of the binding pocket and in the protein structure are found as well. We propose a mutation, A156L, which significantly modifies the selectivity properties of a-TTP towards the two tocopherols. In particular, our simulations predict that A156L binds preferentially to c-tocopherol, with striking structural similarities to the wild-type- a-tocopherol complex. The affinity properties are confirmed by differential scanning fluorimetry as well as in vitro competitive binding assays. Our data indicate that residue A156 is at a critical position for determination of the selectivity of a-TTP. The engineering of TTP mutants with modulating binding properties can have potential impact at industrial level for easier purification of single tocopherols from vitamin E mixtures coming from natural oils or synthetic processes. Moreover," "the identification of a c-tocopherol selective TTP offers the possibility to challenge the hypotheses for the evolutionary development of a mechanism for a-tocopherol selection in omnivorous animals."
Resumo:
The synthesis, biological testing, and NMR studies of several analogues of H-c[Cys (3)-Phe (6)-Phe (7)-DTrp (8)-Lys (9)-Thr (10)-Phe (11)-Cys (14)]-OH (ODT-8, a pan-somatostatin analogue, 1) have been performed to assess the effect of changing the stereochemistry and the number of atoms in the disulfide bridge on binding affinity. Cysteine at positions 3 and/or 14 (somatostatin numbering) were/was substituted with d-cysteine, norcysteine, D-norcysteine, homocysteine, and/or D-homocysteine. The 3D structure analysis of selected partially selective, bioactive analogues (3, 18, 19, and 21) was carried out in dimethylsulfoxide. Interestingly and not unexpectedly, the 3D structures of these analogues comprised the pharmacophore for which the analogues had the highest binding affinities (i.e., sst 4 in all cases).
Resumo:
H-DPhe (2)-c[Cys (3)-Phe (7)-DTrp (8)-Lys (9)-Thr (10)-Cys (14)]-Thr (15)-NH2 (1) (a somatostatin agonist, SRIF numbering) and H-Cpa (2)-c[DCys (3)-Tyr (7)-DTrp (8)-Lys (9)-Thr (10)-Cys (14)]-Nal (15)-NH2 (4) (a somatostatin antagonist) are based on the structure of octreotide that binds to three somatostatin receptor subtypes (sst 2/3/5) with significant binding affinity. Analogues of 1 and 4 were synthesized with norcysteine (Ncy), homocysteine (Hcy), or D-homocysteine (DHcy) at positions 3 and/or 14. Introducing Ncy at positions 3 and 14 constrained the backbone flexibility, resulting in loss of binding affinity at all sst s. The introduction of Hcy at positions 3 and 14 improved selectivity for sst 2 as a result of significant loss of binding affinity at the other sst s. Substitution by DHcy at position 3 in the antagonist scaffold (5), on the other hand, resulted in a significant loss of binding affinity at sst 2 and sst 3 as compared to the different affinities of the parent compound (4). The 3D NMR structures of the analogues in dimethylsulfoxide are consistent with the observed binding affinities.
Resumo:
V2 has long been recognized to contain functionally distinguishable compartments that are correlated with the stripelike pattern of cytochrome oxidase activity. Early electrophysiological studies suggested that color, direction/disparity, and orientation selectivity were largely segregated in the thin, thick, and interstripes, respectively. Subsequent studies revealed a greater degree of homogeneity in the distribution of response properties across stripes, yet color-selective cells were still found to be most prevalent in the thin stripes. Optical recording studies have demonstrated that thin stripes contain both color-preferring and luminance-preferring modules. These thin stripe color-preferring modules contain spatially organized hue maps, whereas the luminance-preferring modules contain spatially organized luminance-change maps. In this study, the neuronal basis of these hue maps was determined by characterizing the selectivity of neurons for isoluminant hues in multiple penetrations within previously characterized V2 thin stripe hue maps. The results indicate that neurons within the superficial layers of V2 thin stripe hue maps are organized into columns whose aggregated hue selectivity is closely related to the hue selectivity of the optically defined hue maps. These data suggest that thin stripes contain hue maps not simply because of their moderate percentage of hue-selective neurons, but because of the columnar and tangential organization of hue selectivity.
Resumo:
Molecular beacons (MBs) are stem-loop DNA probes used for identifying and reporting the presence and localization of nucleic acid targets in vitro and in vivo via target-dependent dequenching of fluorescence. A drawback of conventional MB design is present in the stem sequence that is necessary to keep the MBs in a closed conformation in the absence of a target, but that can participate in target binding in the open (target-on) conformation, giving rise to the possibility of false-positive results. In order to circumvent these problems, we designed MBs in which the stem was replaced by an orthogonal DNA analog that does not cross-pair with natural nucleic acids. Homo-DNA seemed to be specially suited, as it forms stable adenine-adenine base pairs of the reversed Hoogsteen type, potentially reducing the number of necessary building blocks for stem design to one. We found that MBs in which the stem part was replaced by homo-adenylate residues can easily be synthesized using conventional automated DNA synthesis. As conventional MBs, such hybrid MBs show cooperative hairpin to coil transitions in the absence of a DNA target, indicating stable homo-DNA base pair formation in the closed conformation. Furthermore, our results show that the homo-adenylate stem is excluded from DNA target binding, which leads to a significant increase in target binding selectivity