925 resultados para Seismic response analysis
Resumo:
The geological profile of many submerged slopes on the continental shelf consists of normally to lightly overconsolidated clays with depths ranging from a few meters to hundreds of meters. For these soils, earthquake loading can generate significant excess pore water pressures at depth, which can bring the slope to a state of instability during the event or at a later time as a result of pore pressure redistribution within the soil profile. Seismic triggering mechanisms of landslide initiation for these soils are analyzed with the use of a new simplified model for clays which predicts realistic variations of the stress-strain-strength relationships as well as pore pressure generation during dynamic loading in simple shear. The proposed model is implemented in a finite element program to analyze the seismic response of submarine slopes. These analyses provide an assessment of the critical depth and estimated displacements of the mobilized materials and thus are important components for the estimation of submarine landslide-induced tsunamis. © 2003 Elsevier B.V. All rights reserved.
Resumo:
Based on more than 4000 km 2D seismic data and seismic stratigraphic analysis, we discussed the extent and formation mechanism of the Qiongdongnan deep sea channel. The Qiongdongnan deep sea channel is a large incised channel which extends from the east boundary of the Yinggehai Basin, through the whole Qiongdongnan and the Xisha trough, and terminates in the western part of the northwest subbasin of South China Sea. It is more than 570 km long and 4-8 km wide. The chaotic (or continuous) middle (or high) amplitude, middle (or high) continuity seismic facies of the channel reflect the different lithological distribution of the channel. The channel formed as a complex result of global sea level drop during early Pliocene, large scale of sediment supply to the Yinggehai Basin, inversion event of the Red River strike-slip fault, and tilted direction of the Qiongdongnan Basin. The large scale of sediment supply from Red River caused the shelf break of the Yinggehai Basin to move torwards the S and SE direction and developed large scale of prograding wedge from the Miocene, and the inversion of the Red River strike-slip fault induced the sediment slump which formed the Qiongdongnan deep sea channel.
Resumo:
The Jiyang superdepression is one of the richest hydrocarbon accumulations in the Bohai Bay basin, eastern China. Comprehensive seismic methods have been used in buried hill exploration in Jiyang to describe these fractured reservoirs better. Accurate seismic stratigraphic demarcation and variable-velocity mapping were applied to reveal the inner structure of the buried hills and determine the nature of the structural traps more precisely. Based on the analysis of rock properties and the characteristics of well-developed buried hill reservoirs, we have successfully linked the geology and seismic response by applying seismic forward technology. Log-constrained inversion, absorption coefficient analysis and tectonic forward-inversion with FMI loggings were applied to analyse and evaluate the buried hill reservoirs and gave satisfying results. The reservoir prediction was successful, which confirmed that the comprehensive utilization of these methods can be helpful in the exploration of buried hill reservoirs.
Resumo:
Proven by the petroleum exploration activities, the karsts-fissure reservoir in carbonate rocks is significant to find out the large scale oil & gas field. They are made up of the four reservoir types: karsts-cave, karsts-crack, crack-cave and fracture-pore-cave. Each reservoir space and each reservoir bed has different features of reservoir heterogeneity and small scale of pore-crack-cave. The fracture-cave reservoir in carbonate rocks is characteristic by multi-types and long oiliness well. The reservoir shape is controlled by the irregular pore-crack-cave. The development level of fracture and karst-cave is the key element of hydrocarbon enriching, high productivity and stable production. However, most of Carbonate formation are buried deeply and the signal-ration-noise of seismic reflection are very low. It is reason why the fracture-cave reservoir are difficult to be predicted effectively. In terms of surveyed and studied lots of the former research outcome, The author applied the methods of synthetical reservoir geophysical prediction from two ways including macrosopic and microcomic technics in terms of the reservoir-cap condition, geophysics and geology feature and difficulty of prediction in carbonate rocks. It is guiden by the new ideas of stratigraphy, sedimentology, sedimentography, reservoir geology and karst geology. The geophysics technology is key technics. In aspects of macroscopic studies, starting off the three efficiencies of controlling the reservoir distribution including sedimental facies, karst and fracture, by means of comprehensive utilization of geology, geophysics, boring well and well log, the study of reservoir features and karst inside story are developed in terms of data of individual well and multiple well. Through establishing the carbonate deposition model, karstic model and fracture model, the macro-distribution laws of carbonatite are carried out by the study of coherence analysis, seismic reflection feature analysis and palaeotectonics analysis. In aspects of microcosmic studies, starting off analysis in reservoir geophysical response feature of fracture and karst-cave model according to guidance of the macroscopic geological model in carbonate reservoir, the methods of the carbonate reservoir prediction are developed by comprehensively utilization of seismic multi-attribution intersection analysis, seismic inversion restricted by log, seismic discontinuity analysis, seimic spectrum attenuation gradient, moniliform reflection feature analysis and multiparameter karst reservoir appraisement.Through application of carbonate reservoir synthetical geophysics prediction, the author r successfully develops the beneficial reservoir distribution province in Ordovician of Katake block 1in middle Tarim basin. The fracture-cave reservoir distributions are delineated. The prospect direction and favorable aims are demonstrated. There are a set of carbonate reservoir prediction methods in middle Tarim basin. It is the favorable basic technique in predicting reservoir of the Ordovician carbonate in middle Tarim. Proven by exploration drilling, the favorable region of moniliform reflection fracture and pore-cave and cave-fracture in lower-middle Ordovician are coincidence with the region of hydrocarbon show. It’s indicated that the reservoir prediction methods described in the study of Ordovician carbonate formation are feasible practicably.
Resumo:
In this paper, based on the E & P situation in the oilfield and the theory of geophysical exploration, a series researches are conducted on fracture reservoir prediction technology in general,and it especially focus on some difficult points. The technological series which integrated amplitude preserved data processing、interpretation and its comprehensive application research as a whole were developed and this new method can be applied to the other similar oilfield exploration and development. The contents and results in this paper are listed as follows: 1. An overview was given on the status and development of fracture reservoir estimation technique, compare and analyze those geophysical prediction methods. This will be very helpful to the similar reservoir researches. 2. Analyze and conclude the characters of geologies and well logging response of burial hills fracture reservoir, those conclusions are used to steer the geophysical research and get satisfying results. 3. Forward modeling anisotropy seismic response of fracture reservoir. Quantitatively describe the azimuthal amplitude variation. Amplitude ellipse at each incidence angle is used to identify the fracture orientation. 4. Numerical simulation of structure stress based on finite difference method is carried out. Quantitatively describe and analyze the direction and intensity of fracture. 5. Conventional attributes extraction of amplitude preserved seismic data、attributes with different azimuthal angle and different offset are used to determine the relationship between the results and fracture distribution. 6. With spectrum decomposition method based on wavelet transform, the author disclose the reservoir distribution in space. It is a powerful tool to display its anisotropy. 7. Integrated seismic wave impendence、elastic impendence、spectrum decomposition、attribute extraction、fracture analysis result as a whole to identify and evaluate the fracture reservoir. An optimum workflow is constructed. It is used to practical oil&gas production and good results are obtained. This can indicate the wide foreground of this technique series.
Resumo:
In China and world, more than half the recent basin discovered reserves involve lithologic hydrocarbon reservoir reserves. The major target for further hydrocarbon basin exploration is the subtle reservoir. The Liaodong Bay prospect is much important in Bohai Sea, which includes Liaoxi low uplift, Liaodong uplift, Liaoxi sag and Liaozhong sag. After dozens years’ exploration in Liaodong Bay, few unexplored big-and-middle-sized favorable structural traps are remained and most of the stock structure targets are bad for fragmentary. Thus seeking for new prospect area and making a breakthrough, have become the unique way to relieve the severe exploration condition in Liaodong Bay. Technique Route Based on the petrophysical property of target area, the seismic forward inference of typical subtle trap model is expanded with analysis of logging, seismic and geologic data. According to petrophysical characteristics and forward inference and research on seismic response of actual seismic data in target area, the optimization of geophysical technique is used in subtle trap identification and the geophysical identification technique system of subtle reservoir is formed. The Key Research ① Petrophysical Model The petrophysical parameter is the basic parameter for seismic wave simulation. The seismic response difference of rocks bearing different fluids is required. With the crossplot of log data, the influence of petrophysical parameters on rock elastic properties of target area is analyzed, such as porosity, shale index, fluid property and saturation. Based on the current research on Biot-Gassmann and Kuster-Toksoz model, the petrophysical parameter calculator program which can be used for fluid substitution is established. ② S-wave evaluation based on conventional log data The shear velocity is needed during forward inference of AVO or other elastic wave field. But most of the recent conventional log data is lack of shear wave. Thus according to the research on petrophysical model, the rock S-wave parameter can be evaluated from conventional log data with probability inverse method. ③ AVO forward modeling based on well data For 6 wells in JZ31-6 block and 9 wells in LD22-1 block, the AVO forward modeling recording is made by log curve. The classification of AVO characteristics in objective interval is made by the lithologic information. ④ The 2D parameter model building and forward modeling of subtle hydrocarbon trap in target area. According to the formation interpretation of ESS03D seismic area, the 2D parameter model building and seismic wave field forward modeling are carried on the given and predicted subtle hydrocarbon trap with log curve. ⑤ The lithology and fluid identification of subtle trap in target area After study the seismic response characteristics of lithology and fluid in given target area, the optimization of geophysical technique is used for lithology identification and fluid forecast. ⑥The geophysical identification technique system of subtle reservoir The Innovative Points of this Paper ① Based on laboratory measurement and petrophysical model theory, the rock S-wave parameter can be evaluated from conventional log data with probability inverse method. Then the fluid substitution method based on B-G and K-T theory is provided. ② The method and workflow for simulating seismic wave field property of subtle hydrocarbon trap are established based on the petrophysical model building and forward modeling of wave equation. ③ The description of subtle trap structural feature is launched. According to the different reflection of frequency wave field structural attribute, the fluid property of subtle trap can be identified by wave field attenuation attribute and absorption analysis. ④ It’s the first time to identify subtle trap by geophysical technique and provide exploration drilling well location. ⑤ The technique system of subtle reservoir geophysical identification is formed to provide available workflow and research ideas for other region of interest.
Resumo:
In this paper we base on the anisotropic theory and Zoeppritz function of the transmission theory and the law of amplitude versus offset simplify seismic reflection coefficient of different media, analyze the characteristic of the gas or oil saturated stratum or the VTI and HTI models. Discuss the P wave reflection relationship and the meanings of the different parameters. We use measured parameters of a reservoir to simulate the characteristic of the reservoir, study the different effects of stratum saturated with gas or oil and analyze the characteristic of the seismic response of different models which change with different incident angles and different azimuths. Using the field data of logs ,analyze the rock property parameters, build the relationship of logs and parameters by Gassmann theory or empirical function. Calculate the density and the shear modulus and bulk modulus, reconstruct the log curves, calculate shear wave logs and correlate the logs affected by mud and other environmental factors. Finally perform the relationship of the seismic data log of saturated stratum and enhance the ability and reliability in reservoir prediction. Our aim is by the prestack seismic processing to get high solution and amplitude preserved seismic data. Because in incident angle gathers or azimuthal gathers, the low signal to noise ratio and low different covers affect the result of the prestack reservoir prediction. We apply prestack noise erase, cell regularization process and relatively amplitude preservation in the high solution seismic process routine to preserve the characteristic of stratum response, and erase the effects of the noise. In this paper we finished prestack invertion in the BYT survey and fractured reservoir depiction in MB survey. By the invertion and multiple attributes crossplot. we can get the stratum profiles and oil indicator profiles which can predict the distribution of the reservoir and oil. In the MB survey, we get orientation and density of fractured reservoir by the azimuthal seismic amplitude and depict the potential oil and gas reservoir. Prestak invertion works better in distinguishing oil and reservoir.
Resumo:
The real media always attenuate and distort seismic waves as they propagate in the earth. This behavior can be modeled with a viscoelastic and anisotropic wave equation. The real media can be described as fractured media. In this thesis, we present a high-order staggered grid finite-difference scheme for 2-D viscoelastic wave propagation in a medium containing a large number of small finite length fractures. We use the effective medium approach to compute the anisotropic parameters in each grid cell. By comparing our synthetic seismogram by staggered-grid finite-difference with that by complex-ray parameter ray tracing method, we conclude that the high-order staggered-grid finite-difference technique can effectively used to simulate seismic propagation in viscoelastic-anisotropic media. Synthetic seismograms demonstrate that strong attenuation and significant frequency dispersion due to viscosity are important factors of reducing amplitude and delaying arrival time varying with incidence angle or offset. On the other hand, the amount of scattered energy not only provides an indicator of orientation of fracture sets, but can also provide information about the fracture spacing. Analysis of synthetic seismograms from dry- and fluid-filled fractures indicates that dry-filled fractures show more significant scattering on seismic wavefields than fluid-filled ones, and offset-variations in P-wave amplitude are observable. We also analyze seismic response of an anticlinal trap model that includes a gas-filled fractured reservoir with high attenuation, which attenuates and distorts the so-called bright spot.
Resumo:
In recent years, chimney structure has been proved one of important indicators and a useful guide to major petroleum fields exploration through their exploration history both at home and abroad. Chimney structure, which has been called "gas chimney" or "seismic chimney", is the special fluid-filled fracture swarm, which results from the boiling of active thermal fluid caused by abruptly decreasing of high pressure and high temperature in sedimentary layers of upper lithosphere. Chimney structure is well developed in continental shelf basin of East China Sea, which indicates the great perspectives of petroleum resources there. However, the chimney structure also complicated the petroleum accumulation. So the study of chimney structure on its formation, its effect on occurrence and distribution of petroleum fields is very important not only on theoretical, but also on its applied research. It is for the first time to make a clear definition of chimney structure in this paper, and the existence and practical meaning of chimney structure are illustrated. Firstly, on the viewpoint of exploration, this will amplify exploration area or field, not only in marine, but also on continent. Secondly, this is very important to step-by-step exploration and development of petroleum fields with overpressure. Thirdly, this will provide reference for the study on complex petroleum system with multi-sources, commingled sources and accumulation, multi-stage accumulations, and multi-suits petroleum system in the overlay basin. Fourthly, when the thermal fluid enters the oceanic shallow layer, it can help form gas hydrate under favorable low-temperature and high-pressure conditions. Meanwhile, the thermal fluid with its particular component and thermal content will affect the physical, chemical and ecological environments, which will help solving the problem of global resources and environment. Beginning from the regional tectonic evolution characteristics, this paper discussed the tectonic evolution history of the Taibei depression, then made an dynamical analysis of the tectonic-sedimentary evolution during the Mesozoic and Cenozoic for the East China Sea basin. A numerical model of the tectonic-thermal evolution of the basin via the Basin-Mod technique was carried out and the subsidence-buried history and thermal history of the Taibei depression were inverse calculated: it had undergone a early rapid rift and sag, then three times of uplift and erosion, and finally depressed and been buried. The Taibei depression contains a huge thick clastic sedimentary rock of marine facies, transitional facies and continental facies on the complex basement of ante-Jurassic. It is a part of the back-arc rifting basins occurred during the Mesozoic and Cenozoic. The author analyzed the diagenesis and thermal fluid evolution of this area via the observation of cathodoluminescence, scanning electron microscope and thin section, taking advantage of the evidences of magma activities, paleo-geothermics and structural movement, the author concluded that there were at least three tectonic-thermal events and three epochs of thermal-fluid activities; and the three epochs of thermal-fluid activities were directly relative to the first two tectonic-thermal events and were controlled by the generation and expulsion of hydrocarbon in the source rock simultaneously. Based on these, this paper established the corresponding model between the tectonic-thermal events and the thermal-fluid evolution of the Taibei Depression, which becomes the base for the study on the chimney structures. According to the analyses of the gas-isotope, LAM spectrum component of fluid inclusion, geneses of CO_2 components and geneses of hydrocarbon gases, the author preliminarily verified four sources of the thermal fluid in the Taibei Depression: ① dehydration of mud shale compaction, ② expulsion of hydrocarbon in the source rock; ③ CO_2 gas hydro-thermal decomposition of carbonatite; ④magma-derived thermal fluid including the mantle magma water and volatile components (such as H_2O, CO_2, H_2S, SO_2, N_2 and He etc.). On the basis of the vitrinite reflectance (Ro), homogenization temperature of fluid inclusion, interval transit time of major well-logging, mud density of the wells, measured pressure data and the results of previous studies, this paper analyzed the characteristics of the geothermal fields and geo-pressure fields for the various parts in this area, and discussed the transversal distribution of fluid pressure. The Taibei depression on the whole underwent a temperature-loss process from hot basin to cold basin; and locally high thermal anomalies occurred on the regional background of moderate thermal structure. The seal was primarily formed during the middle and late Paleocene. The overpressured system was formed during the middle and late Eocene. The formation of overpressured system in Lishui Sag underwent such an evolutionary process as "form-weaken-strengthen-weaken". Namely, it was formed during the middle and late Eocene, then was weakened in the Oligocene, even partly broken, then strengthened after the Miocene, and finally weakened. The existence of the thermal fluid rich in volatile gas is a physical foundation for the boiling of the fluid, and sharply pressure depletion was the major cause for the boiling of the fluid, which suggests that there exists the condition for thermal fluid to boil. According to the results of the photoelastic simulation and similarity physical experiments, the geological condition and the formation mechanism of chimnestructures are summarized: well compartment is the prerequisite for chimney formation; the boiling of active thermal fluid is the original physical condition for chimney formation; The local place with low stress by tension fault is easy for chimney formation; The way that thermal fluid migrates is one of the important factors which control the types of chimney structures. Based on where the thermal fluid come from and geometrical characteristics of the chimney structures, this paper classified the genetic types of chimney structures, and concluded that there existed three types and six subtypes chimney structures: organic chimney structures generated by the hydrocarbon-bearing thermal fluid in middle-shallow layers, inorganic and commingling-genetic chimney structures generated by thermal fluid in middle-deep layers. According to the seismic profiles interpretations, well logging response analysis and mineralogical and petrological characteristics in the study area, the author summarized the comprehensive identification marks for chimney structures. Especially the horizon velocity analysis method that is established in this paper and takes advantage of interval velocity anomaly is a semi-quantitative and reliable method of chimney structure s identification. It was pointed out in this paper that the occurrence of the chimney structures in the Taibei depression made the mechanism of accumulation complicated. The author provided proof of episodic accumulation of hydrocarbon in this area: The organic component in the boiling inclusion is the trail of petroleum migration, showing the causality between the boiling of thermal fluid and the chimney structures, meanwhile showing the paroxysmal accumulation is an important petroleum accumulation model. Based on the evolutionary characteristics of various types of chimney structures, this paper discussed their relationships with the migration-accumulation of petroleum respectively. At the same time, the author summarized the accumulating-dynamical models associated with chimney structures. The author analyzed such accumulation mechanisms as the facies state, direction, power of petroleum migration, the conditions of trap, the accumulation, leakage and reservation of petroleum, and the distribution rule of petroleum. The author also provides explanation for such practical problems the existence of a lot of mantle-derived CO_2, and its heterogeneous distribution on plane. By study on and recognition for chimney structure, the existence and distribution of much mantle-derived CO_2 found in this area are explained. Caused by tectonic thermal activities, the deep magma with much CO_2-bearing thermal fluid migrate upward along deep fault and chimney structures, which makes two wells within relatively short distance different gas composition, such as in well LF-1 and well LS36-1-1. Meanwhile, the author predicted the distribution of petroleum accumulation belt in middle-shallow layer for this area, pointed out the three favorable exploration areas in future, and provided the scientific and deciding references for future study on the commingling-genetic accumulation of petroleum in middle-deep layer and the new energy-gas hydrate.
Resumo:
In exploration seismology, the geologic target of oil and gas reservoir in complex medium request the high accuracy image of the structure and lithology of the medium. So the study of the prestack image and the elastic inversion of seismic wave in the complex medium come to the leading edge. The seismic response measured at the surface carries two fundamental pieces of information: the propagation effects of the medium and the reflections from the different layer boundaries in the medium. The propagation represent the low-wavenumber component of the medium, it is so-called the trend or macro layering, whereas the reflections represent the high-wavenumber component of the medium, it is called the detailed or fine layering. The result of migration velocity analysis is the resolution of the low-wavenumber component of the medium, but the prestack elastic inversion provided the resolution of the high-wavvenumber component the medium. In the dissertation, the two aspects about the migration velocity estimation and the elastic inversion have been studied.Firstly, any migration velocity analysis methods must include two basic elements: the criterion that tell us how to know whether the model parameters are correct and the updating that tell us how to update the model parameters when they are incorrect, which are effected on the properties and efficiency of the velocity estimation method. In the dissertation, a migration velocity analysis method based on the CFP technology has been presented in which the strategy of the top-down layer stripping approach are adapted to avoid the difficult of the selecting reduce .The proposed method has a advantage that the travel time errors obtained from the DTS panel are defined directly in time which is the difference with the method based on common image gather in which the residual curvature measured in depth should be converted to travel time errors.In the proposed migration velocity analysis method, the four aspects have been improved as follow:? The new parameterization of velocity model is provided in which the boundaries of layers are interpolated with the cubic spline of the control location and the velocity with a layer may change along with lateral position but the value is calculated as a segmented linear function of the velocity of the lateral control points. The proposed parameterization is suitable to updating procedure.? The analytical formulas to represent the travel time errors and the model parameters updates in the t-p domain are derived under local lateral homogeneous. The velocity estimations are iteratively computed as parametric inversion. The zero differential time shift in the DTS panel for each layer show the convergence of the velocity estimation.? The method of building initial model using the priori information is provided to improve the efficiency of velocity analysis. In the proposed method, Picking interesting events in the stacked section to define the boundaries of the layers and the results of conventional velocity analysis are used to define the velocity value of the layers? An interactive integrate software environment with the migration velocity analysis and prestack migration is built.The proposed method is firstly used to the synthetic data. The results of velocity estimation show both properties and efficiency of the velocity estimation are very good.The proposed method is also used to the field data which is the marine data set. In this example, the prestack and poststack depth migration of the data are completed using the different velocity models built with different method. The comparison between them shows that the model from the proposed method is better and improves obviously the quality of migration.In terms of the theoretical method of expressing a multi-variable function by products of single-variable functions which is suggested by Song Jian (2001), the separable expression of one-way wave operator has been studied. A optimization approximation with separable expression of the one-way wave operator is presented which easily deal with the lateral change of velocity in space and wave number domain respectively and has good approach accuracy. A new prestack depth migration algorithm based on the optimization approximation separable expression is developed and used to testing the results of velocity estimation.Secondly, according to the theory of the seismic wave reflection and transmission, the change of the amplitude via the incident angle is related to the elasticity of medium in the subsurface two-side. In the conventional inversion with poststack datum, only the information of the reflection operator at the zero incident angles can be used. If the more robust resolutions are requested, the amplitudes of all incident angles should be used.A natural separable expression of the reflection/transmission operator is represented, which is the sum of the products of two group functions. One group function vary with phase space whereas other group function is related to elastic parameters of the medium and geological structure.By employing the natural separable expression of the reflection/transmission operator, the method of seismic wave modeling with the one-way wave equation is developed to model the primary reflected waves, it is adapt to a certain extent heterogeneous media and confirms the accuracy of AVA of the reflections when the incident angle is less than 45'. The computational efficiency of the scheme is greatly high.The natural separable expression of the reflection/transmission operator is also used to construct prestack elastic inversion algorithm. Being different from the AVO analysis and inversion in which the angle gathers formed during the prstack migration are used, the proposed algorithm construct a linear equations during the prestack migration by the separable expression of the reflection/transmission operator. The unknowns of the linear equations are related to the elasticity of the medium, so the resolutions of them provided the elastic information of the medium.The proposed method of inversion is the same as AVO inversion in , the difference between them is only the method processing the amplitude via the incident angle and computational domain.
Resumo:
This paper uses dynamic impulse response analysis to investigate the interrelationships among stock price volatility, trading volume, and the leverage effect. Dynamic impulse response analysis is a technique for analyzing the multi-step-ahead characteristics of a nonparametric estimate of the one-step conditional density of a strictly stationary process. The technique is the generalization to a nonlinear process of Sims-style impulse response analysis for linear models. In this paper, we refine the technique and apply it to a long panel of daily observations on the price and trading volume of four stocks actively traded on the NYSE: Boeing, Coca-Cola, IBM, and MMM.
Resumo:
In this investigation, the seismic torsional response of a multi-storey concentrically braced frame (CBF) plan irregular structure is evaluated numerically and experimentally through a series of hybrid tests. CBF structures have become popular in seismic design because they are one of the most efficient types of steel structures to resist earthquake loading. However, their response under plan irregular conditions has received little focus mostly in part
due to their complex behaviour under seismic loading conditions. The majority of research on the seismic response of plan irregular structures is based purely on numerical investigations. This paper provides much needed experimental investigation of the seismic response of a CBF plan irregular structure with the aim of characterising the response of this class of structure. The effectiveness of the Eurocode 8 torsional effects provision as a method of designing for
low levels of mass eccentricity is evaluated. Results indicate that some of the observations made by purely numerical models are valid in that; torsionally stiff structures perform well and the stiff side of the structure is subjected to a greater ductility demand compared to the flexible side of the structure. The Eurocode 8 torsional effects provision is shown to be adequate in terms of ductility and interstorey drift however the structure performs poorly
in terms of floor rotation. Importantly, stiffness eccentricity occurs when the provision is applied to the structure when no mass eccentricity exists and results in a significant increase in floor rotations.
Resumo:
Trabalho Final de Mestrado elaborado no Laboratório Nacional de Engenharia Civil (LNEC) para a obtenção do grau de Mestre em Engenharia Civil pelo Instituto Superior de Engenharia de Lisboa no âmbito do protocolo de cooperação entre o ISEL e o LNEC
Resumo:
Trabalho Final de Mestrado elaborado no Laboratório Nacional de Engenharia Civil (LNEC) para a obtenção do grau de Mestre em Engenharia Civil pelo Instituto Superior de Engenharia de Lisboa no âmbito do protocolo de cooperação ente o ISEL e o LNEC
Resumo:
Neural Network has emerged as the topic of the day. The spectrum of its application is as wide as from ECG noise filtering to seismic data analysis and from elementary particle detection to electronic music composition. The focal point of the proposed work is an application of a massively parallel connectionist model network for detection of a sonar target. This task is segmented into: (i) generation of training patterns from sea noise that contains radiated noise of a target, for teaching the network;(ii) selection of suitable network topology and learning algorithm and (iii) training of the network and its subsequent testing where the network detects, in unknown patterns applied to it, the presence of the features it has already learned in. A three-layer perceptron using backpropagation learning is initially subjected to a recursive training with example patterns (derived from sea ambient noise with and without the radiated noise of a target). On every presentation, the error in the output of the network is propagated back and the weights and the bias associated with each neuron in the network are modified in proportion to this error measure. During this iterative process, the network converges and extracts the target features which get encoded into its generalized weights and biases.In every unknown pattern that the converged network subsequently confronts with, it searches for the features already learned and outputs an indication for their presence or absence. This capability for target detection is exhibited by the response of the network to various test patterns presented to it.Three network topologies are tried with two variants of backpropagation learning and a grading of the performance of each combination is subsequently made.