999 resultados para Second corn crop
Resumo:
Many landowners ask about the process and costs for returning land to crop production after trees are cut for biomass. A field on the Squaw Creek bottom, Story County, Iowa was planted to hybrid poplar trees in spring 2000. The trees were planted in rows with a 10-ft spacing. The trees were cut in spring 2010. The resulting field was four acres, and this is the account of the first corn crop in 2011 on the area.
Resumo:
Silagens de milho são mais propensas à deterioração quando expostas ao ar. As leveduras assimiladoras de ácido lático são frequentemente os primeiros microrganismos a iniciar a deterioração aeróbia nas silagens. Alguns estudos reportam que silagem de milho aerobicamente instável está associada à redução no consumo, na produção de leite e depressão no teor de gordura do leite. Portanto, o objetivo deste estudo foi avaliar a influência de inoculação de leveduras (Pichia norvegensis) e a exposição ao ar por 48 horas sobre o valor nutritivo das silagens e o desempenho de vacas leiteiras. O milho foi colhido com 34% de MS, tratado sem (Controle) ou com P. norvegensis, na dose 1×105 ufc/g MV (Levedura) e armazenado silos tipo bolsa (40 t/silo). Após 123 dias de armazenamento, os silos foram abertos e a silagem foi fornecida para vacas leiteiras. Diariamente, as silagens foram retiradas e fornecidas imediatamente (Fresca) ou após 48 horas de exposição (Exposta). Vinte vacas Holandesas foram distribuídas em 5 quadrados latinos replicados 4×4, com períodos de 21 dias (15 d para adaptação + 6 d para amostragem). As dietas foram formuladas para conter: 53% silagem de milho, 8% caroço de algodão, 18% farelo de soja, 9,5% polpa cítrica, 9% milho seco moído e 2,5% premix vitamínico e mineral. Os quatro tratamentos foram assim constituídos: silagem controle fresca (CF), silagem controle exposta (CE), silagem inoculada com levedura fresca (LF) e silagem inoculada com levedura exposta (LE). A inoculação com levedura aumentou as perdas de matéria seca (P<0,001) e reduziu o tempo de estabilidade aeróbia (P=0,03) das silagens de milho. No ensaio de desempenho animal, reduziu a produção de leite corrigida para 3,5% de gordura (P=0,03) e a eficiência alimentar (ELL leite/CMS) (P<0,01), porém não alterou o teor de gordura do leite. Quanto aos efeitos da exposição ao ar por 48 horas, estes reduziram a concentração de ácido lático (P<0,001), que consequentemente aumentou o pH (P=0,004) das silagens, além de reduzir outros produtos de fermentação. A exposição também reduziu a produção de leite corrigido para gordura (P=0,02) e a eficiência alimentar (P=0,10). Nenhum tratamento alterou o consumo de MS. Houve tendência para redução da digestibilidade da MS e FDN e do NDT, quando as silagens foram expostas ao ar. A inoculação com leveduras e a exposição ao ar por 48 horas deprimem o desempenho animal através da redução no valor nutritivo das silagens de milho.
Resumo:
To achieve high yields the corn crop is dependent on nitrogen. Systems of cover crops preceding corn and form of land cultivation are essential for the best use of nitrogen by corn. This study aimed to evaluate the use or not of nitrogen fertilization in corn in succession to cover crops, planted in three cropping systems. The experimental design was randomized blocks with sub-divided portion where the main plots consisted of three cultivation systems (tillage, conventional tillage and minimum tillage), the subplots by four plant cover in monocrop (oat, hairy vetch, field peas and turnip) and sub-subplots by nitrogen fertilization (0 and 160 kg ha-1 N). Evaluations were performed, the cover crops, soil cover rate, dry matter, content and accumulation of nutrients. In corn we evaluated yield components, yield, chlorophyll and nutrient levels in leaves. Among the species coverage studied the oat showed hardiness in the experiment, covering ground faster and showing more dry matter, however vetch hairy showed higher concentrations of N, P and K and higher accumulation of N ha-1. The soil tillage system influenced the K leaf content. The interaction cultivation x coverage showed significance for the total chlorophyll of corn. In the absence of N, N content and chlorophyll were higher where the corn was sown on the pea and hairy vetch. The corn production, despite a higher average in the presence of nitrogen fertilization, did not differ significantly when used the pea and hairy vetch as a cover crop.
Resumo:
RESUMO: O objetivo deste trabalho foi avaliar o efeito do tratamento de sementes com inseticidas sobre o manejo de Dichelops melacanthus e a produtividade da soja e do milho, cultivados em sucessão. O estudo foi realizado em campo, nas safras 2012/2013 (I) e 2013/2014 (II). Avaliaram-se os inseticidas imidacloprido, tiametoxam, tiodicarbe, fipronil e abamectina. Determinaram-se: a densidade populacional do percevejo, a produtividade de soja e milho, e a intensidade da injúria em milho. A densidade do percevejo permaneceu abaixo de um inseto por metro quadrado, na maior parte do ciclo da soja. Os picos populacionais foram observados nas primeiras semanas, após a emergência do milho, e atingiram 2,2 (safra I) e 6,7 (safra II) percevejos por metro quadrado. Na cultura da soja, os inseticidas não reduziram a densidade populacional do percevejo. Na cultura do milho, o imidacloprido reduziu a densidade do percevejo em 23,2% (safra I) e 38,8% (safra II), e a injúria em 61,8% (safra I) e 26,4% (safra II). O tiametoxam reduziu a densidade dos insetos em 27,8% (safra II) e a injúria em 42,7% (safra I). O tratamento de sementes com inseticidas não proporciona aumento de produtividade à soja e ao milho, portanto, não se justifica sua utilização nas condições deste estudo. ABSTRACT: The objective of this work was to evaluate the effect of seed treatment with insecticides on the management of Dichelops melacanthus on the yield of soybean and corn, grown in succession. The study was carried out in a field, in the 2012/2013 (I) and 2013/2014 (II) crop seasons. The evaluated insecticides were: imidacloprid, thiamethoxam, thiodicarb, fipronil, and abamectin. The following were determined: stink bug population density, soybean and corn yield, and corn injury. Population density remained below one stink bug per square meter, in most of the soybean cycle. Population peaks were observed in the first weeks, after corn emergence, and they reached 2.2 (crop season I) and 6.7 (crop season II) stink bugs per square meter. In the soybean crop, the insecticides did not reduce the stink bug population density. In the corn crop, imidacloprid reduced the stink bug density in 23.2% (crop season I) and 38.8% (crop season II), and injury in 61.8% (crop season I) and 26.4% (crop season II). Thiamethoxam reduced the insect population density in 27.8% (crop season II) and injury in 42.7% (crop season I). Seed treatment with insecticides does not provide increase for soybean and corn yields, therefore, their use is not justified in this study's conditions.
Resumo:
Resumo: A cultura do milho sofre grande instabilidade de cultivo em regiões semiáridas, ocasionada, principalmente pela insuficiência de cultivares adaptadas. Á genética, busca a identificação de plantas mais adaptadas às condições em que serão cultivadas, para seleção de um melhor ideótipo. Verificou-se o potencial de variedades de milho, para produtividade de grãos e forragem, além de estimar as relações existentes entre os diferentes caracteres sob condição semiárida do norte do Ceará. Foram avaliados 30 tratamentos, sendo 25 variedades e cinco híbridos testemunhas. O Delineamento utilizado foi blocos ao acaso com duas repetições e com parcelas 0,75m entre linhas e 0,20 m entre plantas. Foram avaliadas 12 variáveis diferentes, em condições de pluviosidade de aproximadamente 500 mm e com períodos de estiagem inferiores a 10 dias até o estádio de florescimento. Identificou-se que em condições de baixa pluviosidade, as cultivares que apresentam maior teor de clorofila e massa fresca, proporcionam melhor desempenho produtivo e conforme observado não houve correlação entres as varriáveis Florescimento Feminino (MF) e Florescimento Masculino (FM) com produtividade de grão (PROD) e produção de Materia Seca (MS), desta forma vale salientar que nas condições em que o experimento , o ciclo fenológico não influênciou nos indices produtivos. [Phenotypic correlations between maize varieties variables in semi-arid conditions in the crop 2014]. Abstract: The corn crop suffers instability crop in semi-arid regions, caused mainly by the lack of adapted cultivars. Genetic seeks to identify more plants adapted to the conditions in which they are cultivated, for selecting a best ideotype. It was verified the potential of maize varieties for grain yield and foragein addition to to estimate the relationships between the different characters under semiarid conditions of northern Ceará. A total of 30 treatments, 25 varieties and five hybrids witnesses. We evaluated 30 treatments with 25 varieties and five hybrids as controls. The design was a randomized block design with two replications. With plots of 0.75 m between rows and 0.20 m between plants. We evaluated 12 different variables, conditions of approximately 500 mm and dry periods less than 10 days until the flowering stage. It was found that in low rainfall conditions, the cultivars with the greatest chlorophyll content and fresh pasta, provide better growth performance and as noted there was no correlation entres the Flowering varriáveis Female (MF) and Flowering Male (FM) with grain yield (PROD) and production of Dry Matter (DM), thus worth pointing out that under the conditions of the experiment, the phenological cycle did not influence the production indices
Resumo:
Estudo feito pela Faculdade de Tecnologia (FATEC) de Pompeia-SP estimou perdas na colheita mecânica do milho de alta tecnologia em até 12 sacas por hectare. A maior parte desta quantidade ocorria na forma de espigas inteiras, e não de grãos soltos. Nosso objetivo foi identificar em que situação o procedimento da catação - recuperação manual das espigas perdidas durante a colheita mecanizada - é lucrativo ou não para o produtor.
Resumo:
In the process of phosphate rock acidulation, several impure P compounds may be formed along with the desirable Ca and NH4 phosphates. Such compounds normally reduce the content of water-soluble P and thus the agronomic effectiveness of commercial fertilizers. In order to study this problem, a greenhouse experiment consisting of three consecutive corn crops was conducted in samples of a Red-Yellow Latosol (Typical Hapludox) in a completely randomized design (6 x 2 x 2), with four replicates. Six commercial fertilizers were added to 2 kg of soil at a rate of 70 mg kg-1 P, based on the content of soluble P in neutral ammonium citrate plus water (NAC + H2O) of the fertilizers. Fertilizer application occurred either in the original form or leached to remove the water-soluble fraction, either by mixing the fertilizer with the whole soil in the pots or with only 1 % of its volume. The corn plants were harvested 40 days after emergence to determine the shoot dry matter and accumulated P. For the first crop and localized application, the elimination of water-soluble P from the original fertilizers resulted in less bioavailable P for the plants. For the second and third crops, the effects of P source, leaching and application methods were not as evident as for the first, suggesting that the tested P sources may have similar efficiencies when considering successive cropping. The conclusion was drawn that the water-insoluble but NAC-soluble fractions of commercial P fertilizers are not necessarily inert because they can provide P in the long run.
Resumo:
Variable-rate nitrogen fertilization (VRF) based on optical spectrometry sensors of crops is a technological innovation capable of improving the nutrient use efficiency (NUE) and mitigate environmental impacts. However, studies addressing fertilization based on crop sensors are still scarce in Brazilian agriculture. This study aims to evaluate the efficiency of an optical crop sensor to assess the nutritional status of corn and compare VRF with the standard strategy of traditional single-rate N fertilization (TSF) used by farmers. With this purpose, three experiments were conducted at different locations in Southern Brazil, in the growing seasons 2008/09 and 2010/11. The following crop properties were evaluated: above-ground dry matter production, nitrogen (N) content, N uptake, relative chlorophyll content (SPAD) reading, and a vegetation index measured by the optical sensor N-Sensor® ALS. The plants were evaluated in the stages V4, V6, V8, V10, V12 and at corn flowering. The experiments had a completely randomized design at three different sites that were analyzed separately. The vegetation index was directly related to above-ground dry matter production (R² = 0.91; p<0.0001), total N uptake (R² = 0.87; p<0.0001) and SPAD reading (R² = 0.63; p<0.0001) and inversely related to plant N content (R² = 0.53; p<0.0001). The efficiency of VRF for plant nutrition was influenced by the specific climatic conditions of each site. Therefore, the efficiency of the VRF strategy was similar to that of the standard farmer fertilizer strategy at sites 1 and 2. However, at site 3 where the climatic conditions were favorable for corn growth, the use of optical sensors to determine VRF resulted in a 12 % increase in N plant uptake in relation to the standard fertilization, indicating the potential of this technology to improve NUE.
Resumo:
Generally, in tropical and subtropical agroecosystems, the efficiency of nitrogen (N) fertilization is low, inducing a temporal variability of crop yield, economic losses, and environmental impacts. Variable-rate N fertilization (VRF), based on optical spectrometry crop sensors, could increase the N use efficiency (NUE). The objective of this study was to evaluate the corn grain yield and N fertilization efficiency under VRF determined by an optical sensor in comparison to the traditional single-application N fertilization (TSF). With this purpose, three experiments with no-tillage corn were carried out in the 2008/09 and 2010/11 growing seasons on a Hapludox in South Brazil, in a completely randomized design, at three different sites that were analyzed separately. The following crop properties were evaluated: aboveground dry matter production and quantity of N uptake at corn flowering, grain yield, and vegetation index determined by an N-Sensor® ALS optical sensor. Across the sites, the corn N fertilizer had a positive effect on corn N uptake, resulting in increased corn dry matter and grain yield. However, N fertilization induced lower increases of corn grain yield at site 2, where there was a severe drought during the growing period. The VRF defined by the optical crop sensor increased the apparent N recovery (NRE) and agronomic efficiency of N (NAE) compared to the traditional fertilizer strategy. In the average of sites 1 and 3, which were not affected by drought, VRF promoted an increase of 28.0 and 41.3 % in NAE and NRE, respectively. Despite these results, no increases in corn grain yield were observed by the use of VRF compared to TSF.
Resumo:
In order to select soil management practices that increase the nitrogen-use efficiency (NUE) in agro-ecosystems, the different indices of agronomic fertilizer efficiency must be evaluated under varied weather conditions. This study assessed the NUE indices in no-till corn in southern Paraguay. Nitrogen fertilizer rates from 0 to 180 kg ha-1 were applied in a single application at corn sowing and the crop response investigated in two growing seasons (2010 and 2011). The experimental design was a randomized block with three replications. Based on the data of grain yield, dry matter, and N uptake, the following fertilizer indices were assessed: agronomic N-use efficiency (ANE), apparent N recovery efficiency (NRE), N physiological efficiency (NPE), partial factor productivity (PFP), and partial nutrient balance (PNB). The weather conditions varied largely during the experimental period; the rainfall distribution was favorable for crop growth in the first season and unfavorable in the second. The PFP and ANE indices, as expected, decreased with increasing N fertilizer rates. A general analysis of the N fertilizer indices in the first season showed that the maximum rate (180 kg ha-1) obtained the highest corn yield and also optimized the efficiency of NPE, NRE and ANE. In the second season, under water stress, the most efficient N fertilizer rate (60 kg ha-1) was three times lower than in the first season, indicating a strong influence of weather conditions on NUE. Considering that weather instability is typical for southern Paraguay, anticipated full N fertilization at corn sowing is not recommended due the temporal variability of the optimum N fertilizer rate needed to achieve high ANE.
Resumo:
ABSTRACT Increasing attention has recently been given to sweet sorghum as a renewable raw material for ethanol production, mainly because its cultivation can be fully mechanized. However, the intensive use of agricultural machinery causes soil structural degradation, especially when performed under inadequate conditions of soil moisture. The aims of this study were to evaluate the physical quality of aLatossolo Vermelho Distroférrico (Oxisol) under compaction and its components on sweet sorghum yield forsecond cropsowing in the Brazilian Cerrado (Brazilian tropical savanna). The experiment was conducted in a randomized block design, in a split plot arrangement, with four replications. Five levels of soil compaction were tested from the passing of a tractor at the following traffic intensities: 0 (absence of additional compaction), 1, 2, 7, and 15 passes over the same spot. The subplots consisted of three different sowing times of sweet sorghum during the off-season of 2013 (20/01, 17/02, and 16/03). Soil physical quality was measured through the least limiting water range (LLWR) and soil water limitation; crop yield and technological parameters were also measured. Monitoring of soil water contents indicated a reduction in the frequency of water content in the soil within the limits of the LLWR (Fwithin) as agricultural traffic increased (T0 = T1 = T2>T7>T15), and crop yield is directly associated with soil water content. The crop sown in January had higher industrial quality; however, there was stalk yield reduction when bulk density was greater than 1.26 Mg m-3, with a maximum yield of 50 Mg ha-1 in this sowing time. Cultivation of sweet sorghum as a second crop is a promising alternative, but care should be taken in cultivation under conditions of pronounced climatic risks, due to low stalk yield.
Resumo:
In crop rotations that include alfalfa (Medicago sativa L.), agronomic and environmental concerns mean that it is important to determine the N fertilizer contribution of this legume for subsequent crops in order to help to increase the sustainability of cropping systems. To determine the N fertilizer replacement value (FRV) of a 2-yr alfalfa crop on subsequent crops of corn (Zea mays L.) followed by wheat (Triticum aestivum L.) under irrigated Mediterranean conditions, two 4-yr rotations (alfalfa-corn-wheat and corn-corn-corn-wheat) were conducted from 2001 to 2004 in a Typic Xerofluvent soil. Corn yields were compared after two years of alfalfa and a third year of corn under monoculture and wheat yields were also compared after both rotations. Corn production after alfalfa outyielded monoculture corn at all four rates of N fertilizer application analyzed (0, 100, 200 and 300 kg N/ha). The FRV of 2-yr alfalfa for corn was about 160 kg N/ha. Wheat grown after the alfalfa-corn rotation outyielded that grown after corn under monoculture at both the rates of N studied (0 and 100 kg N/ha). The FRV of alfalfa for wheat following alfalfa-corn was about 76 kg N/ha. Soil NO3 -N content after alfalfa was greater than with the corn monoculture at all rates of N fertilizer application and this higher value persisted during the second crop after alfalfa. This was probably one of the reasons for the better yields associated with the alfalfa rotation. These results make a valuable contribution to irrigated agriculture under mediterranean conditions, show reasons for interest in rotating alfalfa with corn, and explain how it is possible to make savings when applying N fertilizer.
Resumo:
A model to estimate damage caused by gray leaf spot of corn (Cercospora zea-maydis) was developed from experimental field data gathered during the summer seasons of 2000/01 and during the second crop season [January-seedtime] of 2001, in the southwest of Goiás state. Three corn hybrids were grown over two seasons and on two sites, resulting in 12 experimental plots. A disease intensity gradient (lesions per leaf) was generated through application, three times over the season, of five different doses of the fungicide propiconazol. From tasseling onward, disease intensity on the ear leaf (El), and El - 1, El - 2, El + 1, and El + 2, was evaluated weekly. A manual harvest at the physiological ripening stage was followed by grain drying and cleaning. Finally, grain yield in kg.ha-1 was estimated. Regression analysis, performed between grain yield and all combinations of the number of lesions on each leaf type, generated thirty linear equations representing the damage function. To estimate losses caused by different disease intensities at different corn growth stages, these models should first be validated. Damage coefficients may be used in determining the economic damage threshold.
Resumo:
Corn is planted in the Center West region of Brazil as a second crop, following soybeans or beans. Intercropping of Brachiaria species with corn as a second crop increases the mulching in the cropping system. This study aimed to evaluate the weeds infestation in soybeans following corn/forages intercrop, as a function of corn plant structure, forage species and density. Experiments were conducted in a completely randomized blocks design with four replications, in Ponta Porã and Dourados municipalities, Mato Grosso do Sul state, Brazil, in 2010/2011. Treatments consisted of three corn hybrids with distinct plant architectures intercropped with three forage species: Brachiaria ruziziensis, B. brizantha and B.decumbens, at five densities, and the resulting dry mass was maintained throughout the winter. During the following cropping season, forages were desiccated prior to planting soybeans, and the dry mass of weeds, dry mass of the mulching, soil coverage by weeds, and the broadleaf/grass weed species index (WPI) were determined 15 days after soybean emergence, submitted to an F-test, and analyzed either by regression or by multiple mean comparison, according to the nature of the data. When intercropping corn with species of Brachiaria, a reduction in the overall weeds infestation may always be expected; among the studied forage species, more problems with weeds may be anticipated in areas with a less competitive species, e.g. B.ruziziensis. Under the conditions of the trials, B.brizantha and B.decumbens were more capable of inhibiting the emergence of weed species in the winter.
Resumo:
Two experiments were carried out to evaluate soil persistence of chlorimuron-ethyl and metsulfuron-methyl and phytotoxicity to corn seeded as a succeeding crop. One experiment was conducted with chlorimuron-ethyl applied at 20 g ha-1, and one with metsulfuron-methyl applied at 3.96 g ha-1. Treatments were arranged in a factorial design with two types of soil (sandy and clay), three irrigation regimes (daily, weekly and no irrigation) and four application timings (90, 60 and 30 days before corn seeding, as well as untreated plots). Soil persistence of the herbicides was influenced by water availability, molecule water solubility (leaching potential) and application timings prior to corn seeding. In sandy soil, with adequate water availability, leaching probably had the greatest influence, reducing the persistence of the products, and consequently allowing less time between product application and corn seeding. In clay soil, microbial degradation was probably more important, because it was assumed that the lesser time available for microorganism activity, the lesser the damage was observed for corn, as long as the crop had enough water availability. Metsulfuron-methyl was the least phytotoxic herbicide, possibly as a result of the properties of its molecule and its higher leaching potential.