957 resultados para SYNTHETIC PHOSPHOLIPIDS
Resumo:
Silver salts of hexafluorophosphates, tetrafluoro-borates and hexafluorosilicates have been prepared by a metathetic reaction between the respective ammonium salts and silver nitrate in acetonitrile medium. This one step procedure at room temperature offers salts of high purity in good yields. The salts (AgpF6, AgBF4 and Ag2SiF6) have been characterised by IR spectral data analysis and chemical analysis.
Resumo:
The first line medication for mild to moderate Alzheimer s disease (AD) is based on cholinesterase inhibitors which prolong the effect of the neurotransmitter acetylcholine in cholinergic nerve synapses which relieves the symptoms of the disease. Implications of cholinesterases involvement in disease modifying processes has increased interest in this research area. The drug discovery and development process is a long and expensive process that takes on average 13.5 years and costs approximately 0.9 billion US dollars. Drug attritions in the clinical phases are common due to several reasons, e.g., poor bioavailability of compounds leading to low efficacy or toxic effects. Thus, improvements in the early drug discovery process are needed to create highly potent non-toxic compounds with predicted drug-like properties. Nature has been a good source for the discovery of new medicines accounting for around half of the new drugs approved to market during the last three decades. These compounds are direct isolates from the nature, their synthetic derivatives or natural mimics. Synthetic chemistry is an alternative way to produce compounds for drug discovery purposes. Both sources have pros and cons. The screening of new bioactive compounds in vitro is based on assaying compound libraries against targets. Assay set-up has to be adapted and validated for each screen to produce high quality data. Depending on the size of the library, miniaturization and automation are often requirements to reduce solvent and compound amounts and fasten the process. In this contribution, natural extract, natural pure compound and synthetic compound libraries were assessed as sources for new bioactive compounds. The libraries were screened primarily for acetylcholinesterase inhibitory effect and secondarily for butyrylcholinesterase inhibitory effect. To be able to screen the libraries, two assays were evaluated as screening tools and adapted to be compatible with special features of each library. The assays were validated to create high quality data. Cholinesterase inhibitors with various potencies and selectivity were found in natural product and synthetic compound libraries which indicates that the two sources complement each other. It is acknowledged that natural compounds differ structurally from compounds in synthetic compound libraries which further support the view of complementation especially if a high diversity of structures is the criterion for selection of compounds in a library.
Resumo:
Distamycin and netropsin, a class of minor groove binding nonintercalating agents, are characterized by their B-DNA and A-T basespecific interactions. To understand the CQI I ~OIT~ ~ I ~ ~aOnMd ~c hemical basis of the above specificities, the DNA-binding characteristics of a novel synthetic analogue of distamycin have been studied. The analogue, mPD derivative, has the requisite charged end groups and a number of potential hydrogen-bonding loci equal to those of distamycin. The difference in the backbone curvatures of the ligands, distamycin, the mPD derivative, and NSC 101327 (another structurally analogous compound),is a major difference between these ligands. UV and CD spectrosoopic studies reported here show the following salient features: The mPD derivative recognizes only B-DNA, to which it binds via the minor groove. On the other hand, unlike distamycin, it binds with comparable affinities to A-T and G-C base pairs in a natural DNA. These DNA-binding properties are compared with those reported earlier for distamycin and NSC 101327 [Zimmer, Ch., & Wahnert, U. (1986) Prog. Biophys. Mol. Biol. 47, 31-1121. The backbone structures of these three ligands were compared to show the progressive decrease in curvatures in the order distamycin, mPD derivative, and NSC 101327. The plausible significance of the backbone curvature vis-&vis the characteristic B-DNA and AT-specific binding of distamycin is discussed. To our knowledge, this is the first attempt (with a model synthetic analogue) to probe the possible influence of backbone curvature upon the specificity of interactions of the distamycin class of groove-binding ligands with DNA.
Resumo:
A novel synthetic approach towards the recently reported anti-tumor and anti-tuberculor natural product ottelione A from the readily available Diels-Alder adduct of cyclopentadiene and p-benzoquinone is delineated. Our short strategy, besides being enantio-, regio- and stereoselective, charts an eventful course and is inherently well-suited for adaptation towards diverse synthetic analogues of this biologically potent natural product.
Effect of undernutrition on the metabolism of phospholipids and gangliosides in developing rat brain
Resumo:
1. Phospholipid content of brains of 3- or 8-week-old undernourished rats was 7--9% less than that for the corresponding control animals and this deficit could not be made up by rehabilitation. Phosphatidyl ethanolamine and plasmalogen were the components most affected in brains of undernourished rats. 2. Incorporation of 32P into phospholipids by brain homogenates was 28% higher in 3-week-old undernourished rats. It is suggested that enhanced phospholipid metabolism in undernourished animals may be related to behavioural alterations noted previously (Sobotka, Cook & Brodie, 1974). 3. Ganglioside concentrations in 3- and 8-week-old undernourished animals were 14% and 11.5% less respectively than those of the control animals and this difference could be made up by rehabilitation. [14C]Glucosamine incorporation in vivo into brain gangliosides was not affected by undernutrition.
Synthetic peptide models for the redox-active disulfide loop of glutaredoxin. Conformational studies
Resumo:
Two cyclic peptide disulfides Boc-Cys-Pro-X-Cys-NHMe (X = L-Tyr or L-Phe) have been synthesized as models for the 14-membered redox-active disulfide loop of glutaredoxin. 'H NMR studies at 270 MHz in chloroform solutions establish a type I 0-turn conformation for the Pro-X segment in both peptides, stabilized by a 4-1 hydrogen bond between the Cys(1) CO and Cys(4) NH groups. Nuclear Overhauser effects establish that the aromatic ring in the X = Phe peptide is oriented over the central peptide unit. In dimethyl sulfoxide solutions two conformational species are observed in slow exchange on the NMR time scale, for both peptides. These are assigned to type I and type I1 p-turn structures with -Pro-Tyr(Phe)-as the corner residues. The structural assignments are based on correlation of NMR parameters with model 14-membered cyclic cystine peptides with Pro-X spacers. Circular dichroism studies based on the -S-Sn- u* transition suggest a structural change in the disulfide bridge with changing solvent polarity, establishing conformational coupling between the peptide backbone and the disulfide linkage in these systems.
Resumo:
Estrogens the female sex hormones have numerous biological actions. Estradiol is the most abundant estrogen in women before menopause. It influences the development, maturation and function of the female reproductive tract. It also plays a role in mammary cancer. Accordingly determinations of estradiol level in body fluids assist in the evaluation of ovarian function and diagnosis for malignancies. Estriol is the primary estrogen in pregnant women and secreted from the fetoplacental unit. Measurement of estriol in maternal body fluids is the basis of fetoplacental monitoring test. Concentration of estrogens in body fluids is determined by immunoassay. Accuracy of this measurement depends on the availability of a specific antibody. As estrogens are not antigenic, their derivatives (haptens) are coupled with a carrier and this hapten-protein conjugate is used to generate antibodies. Specificity of the generated antibody largely depends on the structure of hapten. Therefore the synthesis of a hapten with a right structure is crucial for the accurate measurement of a steroid. We have synthesised new haptens for estradiol and estriol by adding an alkyl or alkoxy side chain at the C-7 of estrane skeleton. The side chains carry a terminal amino group, which can be used for conjugation with a carrier molecule. Estrogens and their biosynthetic precursor androgens both exist as fatty acid esters. They are known to act as hormone storage but their physiological role is not completely known yet. Our collaborator is studying their effect in cardiovascular diseases. We synthesised fatty acid ester derivatives of several steroids in high yield by a very rapid procedure (in 1 min) under microwave irradiation in an ionic liquid (IL). An expedient regioselective hydrolysis at C-3 of estradiol diesters is also reported. 8-Isoestrogens are compounds of pharmaceutical interests, their synthesis, structure, conformation and biological activity studies are ongoing. 7-Hydroxy-8-isoestradiol and 7-alkyl ether of it were synthesised as well. During this study we have developed a selective O-debenzylation method. A mild route for selective removal of benzylic protection on phenol in presence of benzyl protected alcohol was explored.
Resumo:
A synthetic approach toward the geranylated PPAP natural products, prolifenones A and B. employing Effenberger cyclization as the key step, is delineated. The efficacy of this approach is further expanded through access to an advanced precursor of hyperforin. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Four model dipeptides containing a Z-dehydrophenylalanine residue (ΔZPhe) at the C-terminal, Boc-X-ΔZ Phe-NHMe (X = Ala (1), Gly (2), Pro (3), and Val (4)), have been synthesised and their solution conformations investigated by 270 MHz 1H n.m.r. and i.r. spectroscopy. N.m.r. studies on these peptides clearly show the presence of intramolecularly hydrogen bonded structures in CHCl3 solutions while such structures appear to be absent in the corresponding saturated peptides. This conclusion is also supported by i.r. studies. Studies of the nuclear Overhauser effect provided evidence for the occurrence of a significant population of β-turn structures in solvents like CDCl3 and (CD3)2SO. The observed NOES are consistent with a major contribution from Type II β-turn structure in CDCl3, while in (CD3)2SO solutions there is evidence of a partially extended structure also.
Resumo:
IH NMR studies at 270 MHz on the synthetic alamethicin fragments Z-Aib-Pro-Aib-Ala-Aib-Ala-OMe (1-6), Boc-Gln-Aib-Val-Aib-Gly-Leu-Aib-OMe (7-1 3), Boc-Leu-Aib-Pro-Val-Aib-OMe (1 2-16), and Boc-Gly-Leu- Aib-Pro-Val-Aib-OMe (1 1-16) have been carried out in CDC13 and (CD3)2S0. The intramolecularly hydrogen bonded amide hydrogens in these peptides have been delineated by using solvent titration experiments and temperature coefficientsof NH chemical shifts in (CD3)+30. All the peptides adopt highly folded structures, characterized by intramolecular 4 - 1 hydrogen bonds. The 1-6 fragment adopts a 310 helical conformation with four hydrogen bonds, in agreement with earlier studies (Rao, Ch. P., Nagaraj, R., Rao, C. N. R., & Balaram, P. (1980) Biochemistry 19, 425-4311. The 7-13
Resumo:
The synthesis of 6-acetyl-2,2-dimethyl-8-methoxychromene (lc), a naturally occurring isomer of encecalin (la)h~s been described startilag from 2,2,6- trimethyl-8-methoxyclaromene (2e) which was obtained from creosol (4) in two steps involving condensation of the phenol with malic acid to the coumarin (3), followed by Grignard reaction with CHaMgI. The transformation of (2e) to the natural product (lc) was effeeted by oxidative dehydrogenation by DDQ of the 6-meth~r function to the formyl group (2f), Grignard reaction to the carbinol (2g) and finally its oxidation to the acetyl moiety (lc), the sequence of the essential steps schematically summarised as : Ar-CHs --* Ar-CHO --* Ar-CH (OH) CHs --* Ar---COCHs.
Resumo:
The effect of N-terminal diproline segments in nucleating helical folding in designed peptides has been studied in two model sequences Piv-Pro-Pro-Aib-Leu-Aib-Phe-OMe (1) and Boc-Aib-Pro-Pro-Aib-Val-Ala-Phe-OMe (2). The structure of 1 in crystals, determined by X-ray diffraction, reveals a helical (RR) conformation for the segment residues 2 to 5, stabilized by one 4 -> 1 hydrogen bond and two 5 -> 1 interactions. The N-terminus residue, Pro(1) adopts a polyproline II (P-II) conformation. NMR studies in three different solvent systems support a conformation similar to that observed in crystals. In the apolar solvent CDCl3, NOE data favor the population of both completely helical and partially unfolded structures. In the former, the Pro-Pro segment adopts an alpha(R)-alpha(R) conformation, whereas in the latter, a P-II-alpha(R) structure is established. The conformational equilibrium shifts in favor of the P-II-alpha(R) structure in solvents like methanol and DMSO. A significant population of the Pro(1)- Pro(2) cis conformer is also observed. The NMR results are consistent with the population of at least three conformational states about Pro- Pro segment: trans alpha(R)-alpha(R), trans P-II-alpha(R) and cis P-II-alpha(R). Of these, the two trans conformers are in rapid dynamic exchange on the NMR time scale, whereas the interconversion between cis and trans form is slow. Similar results are obtained with peptide 2. Analysis of 462 diproline segments in protein crystal structures reveals 25 examples of the alpha(R)-alpha(R) conformation followed by a helix. Modeling and energy minimization studies suggest that both P-II-alpha(R) and alpha(R)-alpha(R) conformations have very similar energies in the model hexapeptide 1
Resumo:
Propionate kinase catalyses the last step in the anaerobic breakdown of L-threonine to propionate in which propionyl phosphate and ADP are converted to propionate and ATR Here we report the structures of propionate kinase (TdcD) in the native form as well as in complex with diadenosine 5 ',5 '''-P-1,P-4-tetraphosphate (AP(4)A) by X-ray crystallography. Structure of TdcD obtained after cocrystallization with ATP showed Ap(4)A bound to the active site pocket suggesting the presence of Ap(4)A synthetic activity in TdcD. Binding of Ap(4)A to the enzyme was confirmed by the structure determination of a TdcD-Ap(4)A complex obtained after cocrystallization of TdcD with commercially available Ap(4)A. Mass spectroscopic studies provided further evidence for the formation of Ap(4)A by propionate kinase in the presence of ATP. In the TdcD-Ap(4)A complex structure, Ap(4)A is present in an extended conformation with one adenosine moiety present in the nucleotide binding site and other in the proposed propionate binding site. These observations tend to support direct in-line transfer of phosphoryl group during the kinase reaction.