994 resultados para STRESS MYOCARDIAL PERFUSION SCINTIGRAPHY
Resumo:
BACKGROUND: Induction radiochemotherapy, followed by resection, for T4 non-small cell lung cancer, has shown promising long-term survival but may be associated with increased postoperative morbidity and death, depending on patient selection. Here, we determined the effect of induction radiochemotherapy on pulmonary function and whether postinduction pulmonary function changes predict hospital morbidity and death and long-term survival. METHODS: A consecutive prospective cohort of 72 patients with T4 N0-2 M0 non-small cell lung cancer managed by radiochemotherapy, followed by resection, is reported. All patients underwent thoracoabdominal computed tomography or fusion positron emission tomography-computed tomography, brain imaging, mediastinoscopy, echocardiography, ventilation-perfusion scintigraphy, and pulmonary function testing before and after induction therapy. Resection was performed if the postoperative forced expiratory volume in 1 second and diffusion capacity of the lung for carbon monoxide exceeded 30% predicted and if the postoperative maximum oxygen consumption exceeded 10 mL/kg/min. RESULTS: The postoperative 90-day mortality rate was 8% (lobectomy, 2%; pneumonectomy, 21%; p=0.01). All deaths after pneumonectomy occurred after right-sided procedures. The 3-year and 5-year survival was 50% (95% confidence interval, 36% to 62%) and 45% (95% confidence interval, 31% to 57%) and was significantly associated with completeness of resection (p=0.004) and resection type (pneumonectomy vs lobectomy, p=0.01). There was no correlation between postinduction pulmonary function changes and postoperative morbidity or death or long-term survival in patients managed by lobectomy or pneumonectomy. CONCLUSIONS: In properly selected patients with T4 N0-2 M0 non-small cell lung cancer, resection after induction radiochemotherapy can be performed with a reasonable postoperative mortality rate and long-term survival, provided the resection is complete and a right-sided pneumonectomy is avoided. Postinduction pulmonary function changes did not correlate with postoperative morbidity or death or with long-term outcome.
Resumo:
Obesity has become the leading cause of many chronic diseases, such as type 2 diabetes and cardiovascular diseases. The prevalence of obesity is high in developed countries and it is also a major cause of the use of health services. Ectopic fat accumulation in organs may lead to metabolic disturbances, such as insulin resistance.Weight loss with very-low-energy diet is known to be safe and efficient. Weight loss improves whole body insulin sensitivity, but its effects on tissue and organ level in vivo are not well known. The aims of the studies were to investigate possible changes of weight loss in glucose and fatty acid uptake and perfusion and fat distribution at tissue and organ level using positron emission tomography and magnetic resonance imaging and spectroscopy in 34 healthy obese subjects. The results showed that whole-body insulin sensitivity increased after weight loss with very-low-energy diet and this is associated with improved skeletal muscle insulin-stimulated glucose uptake, but not with adipose tissue, liver or heart glucose uptake. Liver insulin resistance decreased after weight loss. Liver and heart free fatty acid uptakes decreased concomitantly with liver and heart triglyceride content. Adipose tissue and myocardial perfusion decreased. In conclusion, enhanced skeletal muscle glucose uptake leads to increase in whole-body insulin sensitivity when glucose uptake is preserved in other organs studied. These findings suggest that lipid accumulation found in the liver and the heart in obese subjects without co-morbidies is in part reversible by reduced free fatty acid uptake after weight loss. Reduced lipid accumulation in organs may improve metabolic disturbances, e.g. decrease liver insulin resistance. Keywords: Obesity, weight loss, very-low-energy diet, adipose tissue metabolism, liver metabolism, heart metabolism, positron emission tomography
Resumo:
Coronary artery disease (CAD) is a chronic process that evolves over decades and may culminate in myocardial infarction (MI). While invasive coronary angiography (ICA) is still considered the gold standard of imaging CAD, non-invasive assessment of both the vascular anatomy and myocardial perfusion has become an intriguing alternative. In particular, computed tomography (CT) and positron emission tomography (PET) form an attractive combination for such studies. Increased radiation dose is, however, a concern. Our aim in the current thesis was to test novel CT and PET techniques alone and in hybrid setting in the detection and assessment of CAD in clinical patients. Along with diagnostic accuracy, methods for the reduction of the radiation dose was an important target. The study investigating the coronary arteries of patients with atrial fibrillation (AF) showed that CAD may be an important etiology of AF because a high prevalence of CAD was demonstrated within AF patients. In patients with suspected CAD, we demonstrated that a sequential, prospectively ECG-triggered CT technique was applicable to nearly 9/10 clinical patients and the radiation dose was over 60% lower than with spiral CT. To detect the functional significance of obstructive CAD, a novel software for perfusion quantification, CarimasTM, showed high reproducibility with 15O-labelled water in PET, supporting feasibility and good clinical accuracy. In a larger cohort of 107 patients with moderate 30-70% pre-test probability of CAD, hybrid PET/CT was shown to be a powerful diagnostic method in the assessment of CAD with diagnostic accuracy comparable to that of invasive angiography and fractional flow reserve (FFR) measurements. A hybrid study may be performed with a reasonable radiation dose in a vast majority of the cases, improving the performance of stand-alone PET and CT angiography, particularly when the absolute quantification of the perfusion is employed. These results can be applied into clinical practice and will be useful for daily clinical diagnosis of CAD.
Resumo:
Cardiovascular mortality is 15 to 30 times higher in patients with chronic kidney disease than in the age-adjusted general population. Even minor renal dysfunction predicts cardiovascular events and death in the general population. In patients with atherosclerotic renovascular disease the annual cardiovascular event and death rate is even higher. The abnormalities in coronary and peripheral artery function in the different stages of chronic kidney disease and in renovascular disease are still poorly understood, nor have the cardiac effects of renal artery revascularization been well characterized, although considered to be beneficial. This study was conducted to characterize myocardial perfusion and peripheral endothelial function in patients with chronic kidney disease and in patients with atherosclerotic renovascular disease. Myocardial perfusion was measured with positron emission tomography (PET) and peripheral endothelial function with brachial artery flow-mediated dilatation. It has been suggested that the poor renal outcomes after the renal artery revascularization could be due to damage in the stenotic kidney parenchyma; especially the reduction in the microvascular density, changes mainly evident at the cortical level which controls almost 80% of the total renal blood flow. This study was also performed to measure the effect of renal artery stenosis revascularization on renal perfusion in patients with renovascular disease. In order to do that a PET-based method for quantification of renal perfusion was developed. The coronary flow reserve of patients with chronic kidney disease was similar to the coronary flow reserve of healthy controls. In renovascular disease the coronary flow reserve was, however, markedly reduced. Flow-mediated dilatation of brachial artery was decreased in patients with chronic kidney disease compared to healthy controls, and even more so in patients with renovascular disease. After renal artery stenosis revascularization, coronary vascular function and renal perfusion did not improve in patients with atherosclerotic renovascular disease, but in patients with bilateral renal artery stenosis, flow-mediated dilatation improved. Chronic kidney disease does not significantly affect coronary vascular function. On the contrary, coronary vascular function was severely deteriorated in patients with atherosclerotic renovascular disease, possibly because of diffuse coronary artery disease and/or diffuse microvascular disease. The peripheral endothelial function was disturbed in patients with chronic kidney disease and even more so in patient with atherosclerotic renovascular disease. Renal artery stenosis dilatation does not seem to offer any benefits over medical treatment in patients with renovascular disease, since revascularization does not improve coronary vascular function or renal perfusion.
Resumo:
Lipotoxicity is a condition in which fatty acids (FAs) are not efficiently stored in adipose tissue and overflow to non-adipose tissue, causing organ damages. A defect of adipose tissue FA storage capability can be the primary culprit in the insulin resistance condition that characterizes many of the severe metabolic diseases that affect people nowadays. Obesity, in this regard, constitutes the gateway and risk factor of the major killers of modern society, such as cardiovascular disease and cancer. A deep understanding of the pathogenetic mechanisms that underlie obesity and the insulin resistance syndrome is a challenge for modern medicine. In the last twenty years of scientific research, FA metabolism and dysregulations have been the object of numerous studies. Development of more targeted and quantitative methodologies is required on one hand, to investigate and dissect organ metabolism, on the other hand to test the efficacy and mechanisms of action of novel drugs. The combination of functional and anatomical imaging is an answer to this need, since it provides more understanding and more information than we have ever had. The first purpose of this study was to investigate abnormalities of substrate organ metabolism, with special reference to the FA metabolism in obese drug-naïve subjects at an early stage of disease. Secondly, trimetazidine (TMZ), a metabolic drug supposed to inhibit FA oxidation (FAO), has been for the first time evaluated in obese subjects to test a whole body and organ metabolism improvement based on the hypothesis that FAO is increased at an early stage of the disease. A third objective was to investigate the relationship between ectopic fat accumulation surrounding heart and coronaries, and impaired myocardial perfusion in patients with risk of coronary artery disease (CAD). In the current study a new methodology has been developed with PET imaging with 11C-palmitate and compartmental modelling for the non-invasive in vivo study of liver FA metabolism, and a similar approach has been used to study FA metabolism in the skeletal muscle, the adipose tissue and the heart. The results of the different substudies point in the same direction. Obesity, at the an early stage, is associated with an impairment in the esterification of FAs in adipose tissue and skeletal muscle, which is accompanied by the upregulation in skeletal muscle, liver and heart FAO. The inability to store fat may initiate a cascade of events leading to FA oversupply to lean tissue, overload of the oxidative pathway, and accumulation of toxic lipid species and triglycerides, and it was paralleled by a proportional growth in insulin resistance. In subjects with CAD, the accumulation of ectopic fat inside the pericardium is associated with impaired myocardial perfusion, presumably via a paracrine/vasocrine effect. At the beginning of the disease, TMZ is not detrimental to health; on the contrary at the single organ level (heart, skeletal muscle and liver) it seems beneficial, while no relevant effects were found on adipose tissue function. Taken altogether these findings suggest that adipose tissue storage capability should be preserved, if it is not possible to prevent excessive fat intake in the first place.
Resumo:
Introducción: La disminución de flujo en los vasos coronarios sin presencia de oclusión, es conocido como fenómeno de no reflujo, se observa después de la reperfusión, su presentación oscila entre el 5% y el 50% dependiendo de la población y de los criterios diagnósticos, dicho suceso es de mal pronóstico, aumenta el riesgo de morir en los primeros 30 días posterior a la angioplastia (RR 2,1 p 0,038), y se relaciona con falla cardiaca y arritmias, por eso al identificar los factores a los cuales se asocia, se podrán implementar terapias preventivas. Metodología: Estudio de casos y controles pareado por médico que valoró el evento, para garantizar que no existieron variaciones inter observador, con una razón 1:4 (18:72), realizado para identificar factores asociados a la presencia de no reflujo en pacientes llevados a angioplastia, entre noviembre de 2010 y mayo de 2014, en la Clínica San Rafael de Bogotá, D.C. Resultados: La frecuencia del no reflujo fue del 2.89%. El Infarto Agudo de Miocardio con elevación del ST (IAMCEST) fue la única variable que mostró una asociación estadísticamente significativa con este suceso, valor de p 0,002, OR 8,7, IC 95% (2,0 – 36,7). Discusión: El fenómeno de no reflujo en esta población se comportó de manera similar a lo descrito en la literatura, siendo el IAMCEST un factor fuertemente asociado.
Resumo:
Background—A major problem in procurement of donor hearts is the limited time a donor heart remains viable. After cardiectomy, ischemic hypoxia is the main cause of donor heart degradation. The global myocardial ischemia causes a cascade of oxygen radical formation that cumulates in an elevation in hydrogen ions (decrease in pH), irreversible cellular injury, and potential microvascular changes in perfusion. Objective—To determine the changes of prolonged storage times on donor heart microvasculature and the effects of intermittent antegrade perfusion. Materials and Methods—Using porcine hearts flushed with a Ribosol-based cardioplegic solution, we examined how storage time affects microvascular myocardial perfusion by using contrast-enhanced magnetic resonance imaging at a mean (SD) of 6.1 (0.6) hours (n=13) or 15.6 (0.6) hours (n=11) after cardiectomy. Finally, to determine if administration of cardioplegic solution affects pH and microvascular perfusion, isolated hearts (group 1, n=9) given a single antegrade dose, were compared with hearts (group 2, n=8) given intermittent antegrade cardioplegia (150 mL, every 30 min, 150 mL/min) by a heart preservation device. Khuri pH probes in left and right ventricular tissue continuously measured hydrogen ion levels, and perfusion intensity on magnetic resonance images was plotted against time. Results—Myocardial perfusion measured via magnetic resonance imaging at 6.1 hours was significantly greater than at 15.6 hours (67% vs 30%, P= .00008). In group 1 hearts, the mean (SD) for pH at the end of 6 hours decreased to 6.2 (0.2). In group 2, hearts that received intermittent antegrade cardioplegia, pH at the end of 6 hours was higher at 6.7 (0.3) (P=.0005). Magnetic resonance imaging showed no significant differences between the 2 groups in contrast enhancement (group 1, 62%; group 2, 40%) or in the wet/dry weight ratio. Conclusion—Intermittent perfusion maintains a significantly higher myocardial pH than does a conventional single antegrade dose. This difference may translate into an improved quality of donor hearts procured for transplantation, allowing longer distance procurement, tissue matching, improved outcomes for transplant recipients, and ideally a decrease in transplant-related costs.
Resumo:
O emprego da trombectomia na angioplastia primária demonstra bons resultados clínicos e angiográficos imediatos, por meio de redução da embolização distal e do fenômeno do no-reflow e otimização da perfusão miocárdica. Essa técnica, principalmente usada em artérias coronárias, em raras oportunidades é descrita quando empregada em pontes de safena aortocoronarianas. Relatamos o caso de um paciente de 67 anos com infarto agudo do miocárdio relacionado a oclusão de ponte de safena e submetido a trombectomia com bons resultados.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
PURPOSE--To analyze the influence of the myocardial engorgement due to coronary perfusion on the left ventricular diastolic pressure/volume (P/V) relations. METHODS--The study was undertaken in the isovolumic blood-perfused dog heart preparation (n = 7). The P/V relations were determined promoting ventricular volumes variations by steps of 2ml, in two conditions: during coronary perfusion pressure of 100mmHg and after occlusion of the perfusion line. RESULTS--It was verified that the P/V relations obtained without myocardial perfusion shifted to the down right in respect to the perfused heart. A exponential fitting of the P/V relations allows to conclude that there was no difference among the slopes of the curves obtained with and without perfusion. CONCLUSION--Our results indicated that coronary perfusion restrain the capacity of the left ventricle to receive blood, but there is no influence on the passive elastic stiffness of the chamber. This effect was taught to be consequence of the myocardial erectile property.
Resumo:
Sepsis and septic shock are associated with cardiac depression. Cardiovascular instability is a major cause of death in patients with sepsis. Focal adhesion kinase (FAK) is a potential mediator of cardiomyocyte responses to oxidative and mechanical stress. Myocardial collagen deposition can affect cardiac compliance and contractility. The aim of the present study was to determine whether the silencing of FAK is protective against endotoxemia-induced alterations of cardiac structure and function. In male Wistar rats, endotoxemia was induced by intraperitoneal injection of lipopolysaccharide (10 mg/kg). Cardiac morphometry and function were studied in vivo by left ventricular catheterization and histology. Intravenous injection of small interfering RNA targeting FAK was used to silence myocardial expression of the kinase. The hearts of lipopolysaccharide-injected rats showed collagen deposition, increased matrix metalloproteinase 2 activity, and myocyte hypertrophy, as well as reduced 24-h +dP/dt and -dP/dt, together with hypotension, increased left ventricular end-diastolic pressure, and elevated levels of FAK (phosphorylated and unphosphorylated). Focal adhesion kinase silencing reduced the expression and activation of the kinase in cardiac tissue, as well as protecting against the increased collagen deposition, greater matrix metalloproteinase 2 activity, and reduced cardiac contractility that occur during endotoxemia. In conclusion, FAK is activated in endotoxemia, playing a role in cardiac remodeling and in the impairment of cardiac function. This kinase represents a potential therapeutic target for the protection of cardiac function in patients with sepsis.
Resumo:
Herz-Kreislauf-Erkrankungen zählen weltweit zu den Hauptursachen, die zu frühzeitigem Tod führen. Pathophysiologisch liegt eine Gefäßwandverdickung durch Ablagerung arteriosklerotischer Plaques (Arteriosklerose) vor. Die molekulare Bildgebung mit den nuklearmedizinischen Verfahren SPECT und PET zielt darauf ab, minderperfundierte Myokardareale zu visualisieren, um den Krankheitsverlauf durch frühzeitige Therapie abschwächen zu können. Routinemäßig eingesetzt werden die SPECT-Perfusionstracer [99mTc]Sestamibi und [99mTc]Tetrofosmin. Zum Goldstandard für die Quantifizierung der Myokardperfusion werden allerdings die PET-Tracer [13N]NH3 und [15O]H2O, da eine absolute Bestimmung des Blutflusses in mL/min/g sowohl in der Ruhe als auch bei Belastung möglich ist. 2007 wurde [18F]Flurpiridaz als neuer Myokardtracer vorgestellt, dessen Bindung an den MC I sowohl in Ratten, Hasen, Primaten als auch in ersten klinischen Humanstudien eine selektive Myokardaufnahme zeigte. Um eine Verfügbarkeit des Radionuklids über einen Radionuklidgenerator gewährleisten zu können, sollten makrozyklische 68Ga-Myokard-Perfusionstracer auf Pyridaben-Basis synthetisiert und evaluiert werden. Die neue Tracer-Klasse setzte sich aus dem makrozyklischen Chelator, einem Linker und dem Insektizid Pyridaben als Targeting-Vektor zusammen. Struktur-Affinitätsbeziehungen konnten auf Grund von Variation des Linkers (Länge und Polarität), der Komplexladung (neutral und einfach positiv geladen), des Chelators (DOTA, NODAGA, DO2A) sowie durch einen Multivalenzansatz (Monomer und Dimer) aufgestellt werden. Insgesamt wurden 16 neue Verbindungen synthetisiert. Ihre 68Ga-Markierung wurde hinsichtlich pH-Wert, Temperatur, Vorläufermenge und Reaktionszeit optimiert. Die DOTA/NODAGA-Pyridaben-Derivate ließen sich mit niedrigen Substanzmengen (6 - 25 nmol) in 0,1 M HEPES-Puffer (pH 3,4) bei 95°C innerhalb 15 min mit Ausbeuten > 95 % markieren. Für die DO2A-basierenden Verbindungen bedurfte es einer mikrowellengestützen Markierung (300 W, 1 min, 150°C), um vergleichbare Ausbeuten zu erzielen. Die in vitro-Stabilitätstests aller Verbindungen erfolgten in EtOH, NaCl und humanem Serum. Es konnten keine Instabilitäten innerhalb 80 min bei 37°C festgestellt werden. Unter Verwendung der „shake flask“-Methode wurden die Lipophilien (log D = -1,90 – 1,91) anhand des Verteilungs-quotienten in Octanol/PBS-Puffer ermittelt. Die kalten Referenzsubstanzen wurden mit GaCl3 hergestellt und zur Bestimmung der IC50-Werte (34,1 µM – 1 µM) in vitro auf ihre Affinität zum MC I getestet. In vivo-Evaluierungen erfolgten mit den zwei potentesten Verbindungen [68Ga]VN160.MZ und [68Ga]VN167.MZ durch µ-PET-Aufnahmen (n=3) in gesunden Ratten über 60 min. Um die Organverteilung ermitteln zu können, wurden ex vivo-Biodistributionsstudien (n=3) vorgenommen. Sowohl die µ-PET-Untersuchungen als auch die Biodistributionsstudien zeigten, dass es bei [68Ga]VN167.MZ zwar zu einer Herzaufnahme kam, die jedoch eher perfusionsabhängig ist. Eine Retention des Tracers im Myokard konnte in geringem Umfang festgestellt werden.
Resumo:
OBJECTIVE: Flow mismatch between the supplying artery and the myocardial perfusion region has been observed in patients with internal thoracic artery grafts. Thus coronary flow changes of arterial (internal thoracic artery grafts) and saphenous (saphenous vein grafts) bypass grafts were studied early and late after coronary artery bypass grafting. METHODS: Thirty patients undergoing elective bypass surgery (internal thoracic artery and saphenous vein grafts) were studied intraoperatively and (17 patients) 3 to 10 months postoperatively. Coronary flow was measured intraoperatively with the transit-time Doppler scanning technique. Postoperatively, flow velocity and coronary flow reserve were determined with the Doppler flow wire technique. Quantitative angiographic analysis was used to determine vessel size for calculation of absolute flow. RESULTS: Intraoperatively, internal thoracic artery graft flow was significantly lower than saphenous vein graft flow (31 +/- 8 vs 58 +/- 29 mL/min, P < .01). Postoperatively, internal thoracic artery graft flow increased significantly to 42 +/- 24 mL/min at 3 months and to 56 +/- 30 mL/min (P < .02 vs intraoperative value) at 10 months, respectively. However, saphenous vein graft flow remained unchanged over time (58 +/- 29 to 50 +/- 27 mL/min at 3 months and 46 +/- 27 mL/min at 10 months). Coronary flow reserve was abnormally low intraoperatively in the internal thoracic artery (1.3 +/- 0.3) and saphenous vein (1.6 +/- 0.5) grafts but increased significantly to normal values in both types of graft at follow-up. CONCLUSIONS: Bypass flow of the internal thoracic artery graft is significantly reduced intraoperatively when compared with that of the saphenous vein graft. However, 3 and 10 months after the operation, flow of the internal thoracic artery graft increases significantly and is similar to saphenous vein graft flow. This finding can be explained by an early flow mismatch of the native internal thoracic artery in the presence of a large perfusion territory. During follow-up, there is vascular remodeling of the internal thoracic artery, probably because of endothelium-mediated mechanisms.
Resumo:
The clinical importance of pulsatility is a recurring topic of debate in mechanical circulatory support. Lack of pulsatility has been identified as a possible factor responsible for adverse events and has also demonstrated a role in myocardial perfusion and cardiac recovery. A commonly used method for restoring pulsatility with rotodynamic blood pumps (RBPs) is to modulate the speed profile, synchronized to the cardiac cycle. This introduces additional parameters that influence the (un)loading of the heart, including the timing (phase shift) between the native cardiac cycle and the pump pulses, and the amplitude of speed modulation. In this study, the impact of these parameters upon the heart-RBP interaction was examined in terms of the pressure head-flow (HQ) diagram. The measurements were conducted using a rotodynamic Deltastream DP2 pump in a validated hybrid mock circulation with baroreflex function. The pump was operated with a sinusoidal speed profile, synchronized to the native cardiac cycle. The simulated ventriculo-aortic cannulation showed that the level of (un)loading and the shape of the HQ loops strongly depend on the phase shift. The HQ loops displayed characteristic shapes depending on the phase shift. Increased contribution of native contraction (increased ventricular stroke work [WS ]) resulted in a broadening of the loops. It was found that the previously described linear relationship between WS and the area of the HQ loop for constant pump speeds becomes a family of linear relationships, whose slope depends on the phase shift.
Resumo:
Background Gray scale images make the bulk of data in bio-medical image analysis, and hence, the main focus of many image processing tasks lies in the processing of these monochrome images. With ever improving acquisition devices, spatial and temporal image resolution increases, and data sets become very large. Various image processing frameworks exists that make the development of new algorithms easy by using high level programming languages or visual programming. These frameworks are also accessable to researchers that have no background or little in software development because they take care of otherwise complex tasks. Specifically, the management of working memory is taken care of automatically, usually at the price of requiring more it. As a result, processing large data sets with these tools becomes increasingly difficult on work station class computers. One alternative to using these high level processing tools is the development of new algorithms in a languages like C++, that gives the developer full control over how memory is handled, but the resulting workflow for the prototyping of new algorithms is rather time intensive, and also not appropriate for a researcher with little or no knowledge in software development. Another alternative is in using command line tools that run image processing tasks, use the hard disk to store intermediate results, and provide automation by using shell scripts. Although not as convenient as, e.g. visual programming, this approach is still accessable to researchers without a background in computer science. However, only few tools exist that provide this kind of processing interface, they are usually quite task specific, and don’t provide an clear approach when one wants to shape a new command line tool from a prototype shell script. Results The proposed framework, MIA, provides a combination of command line tools, plug-ins, and libraries that make it possible to run image processing tasks interactively in a command shell and to prototype by using the according shell scripting language. Since the hard disk becomes the temporal storage memory management is usually a non-issue in the prototyping phase. By using string-based descriptions for filters, optimizers, and the likes, the transition from shell scripts to full fledged programs implemented in C++ is also made easy. In addition, its design based on atomic plug-ins and single tasks command line tools makes it easy to extend MIA, usually without the requirement to touch or recompile existing code. Conclusion In this article, we describe the general design of MIA, a general purpouse framework for gray scale image processing. We demonstrated the applicability of the software with example applications from three different research scenarios, namely motion compensation in myocardial perfusion imaging, the processing of high resolution image data that arises in virtual anthropology, and retrospective analysis of treatment outcome in orthognathic surgery. With MIA prototyping algorithms by using shell scripts that combine small, single-task command line tools is a viable alternative to the use of high level languages, an approach that is especially useful when large data sets need to be processed.