973 resultados para STRAIN-INDUCED FERROELECTRICITY


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present study, wedge-shaped samples were used to determine the effect of nominal equivalent strain (between 0 and 1.2) and carbon content (0.06--0.35%C) on ferrite grain refinement through dynamic strain-induced transformation (DSIT) in plain carbon steels using single-pass rolling. The microstructural evolution of the transformation of austenite to ferrite has been evaluated through the thickness of the strip. The results showed a number of important microstructural features as a function of strain which could be classified into three regions; no DSIT region, DSIT region and the ultrafine ferrite (UFF) grain region. Also, the extent of these regions was strongly influenced by the carbon content. The UFF microstructure consisted of ultrafine, equiaxed ferrite grains (<2 μ$m) with very fine cementite particles. In the centre of the rolled strip, there was a conventional ferrite-pearlite microstructure, although ferrite grain refinement and the volume fraction of ferrite increased with an increase in the nominal equivalent strain.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There is now considerable interest in the development of ultrafine grained steels with an average grain size of the order of 1µm. One of the methods with currently the greatest industrial interest is by dynamic strain induced transformation from austenite to ferrite. This involves deformation below the
equilibrium transformation temperature so that transformation occurs during the deformation. However, large strains are required to completely transform the microstructure during deformation. It is potentially possible to activate transformation during deformation then continue transformation
during subsequent cooling. It is shown that there are two critical strains: the first is where dynamic transformation commences and the second is the minimum strain for a fully ultrafine final microstructure after cooling to room temperature. The deformation and potential role of dynamic
recrystallization of the dynamically formed ferrite is also considered. Overall it is clear that for full industrial exploitation there is a need to understand and exploit the competing issues of nucleation, growth and recrystallization of the ferrite by both dynamic and static processes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A rapid method has been developed to determine recrystallization kinetics of Nb microalloyed steels by interrupted hot torsion test. The softening behaviour was achieved as a function of different processing parameters. The method clearly identified three regions, where the strain dependency of the recrystallization rate varied. Firstly, at large strains the rate of recrystallization was not a function of strain; this is generally ascribed to metadynamic recrystallization. At lower strains the time to 50% recrystallization showed a power low relationship with strain, characteristic of static recrystallization. A further break point exists on the time for 50% softening curve when strain induced precipitation occurs in the material. The onset of strain induced precipitation was at strains below the strain to the peak stress at temperatures below 900°C. The experimental results were used to estimate the time for 50% softening and to anticipate the onset of the strain induced precipitation for the alloy of this study. Grain refinement of the recrystallized austenite continued to strains significantly beyond the peak stress and beyond the static to metadynamic recrystallization rate transition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The formation of ultrafine grained steels is an area of intense research around the World. There are a number of methods to produce grain sizes of approximately 1 µm, ranging from extreme thermal and deformation cycles to more typical thermomechanical processes. This paper reviews the status of the production of ultrafine grained steels through relatively simple thermomechanical processing. It is shown that this requires deformation within the Ae3 to Ar3 temperature range for a given alloy. The formation of ultrafine ferrite involves a dynamic transformation of a significant volume fraction of the austenite to ferrite. This dynamic strain induced transformation arises from the introduction of additional intragranular nucleation sites. It is possible that the deformation also hinders the growth or coarsening of the ferrite and may also lead to dynamic recrystallization of the ferrite. The most likely commercial exploitation of ultrafine ferrite would appear to rely on the formation of a critical volume fraction of dynamic strain induced ferrite followed by controlled cooling to ensure this is maintained to room temperature and to also form other secondary phases, such as martensite, bainite and/or retained austenite to improve the formability.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The development of ultrafine grained microstructures in steels has received considerable attention in recent times. In many cases the aim is to produce high strength structural steels with minimal alloying. It is well established that for an equiaxed ferrite with a uniform dispersion of second phase, both the strength and toughness will be markedly improved if the grain size can be reduced to 1-2 μm, from the typical range of 5-10 μm. Means of achieving this through dynamic strain induced transformation are examined here, following a brief overview of some of the key issues encountered when attempting to refine the austenite in existing mill configurations. A number of deformation microstructure maps are developed to aid the discussion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The formation of ultrafine ferrite by strain induced transformation is assessed using rolling and hot torsion experiments. These experiments are used to examine the impact of thermomechanical processing conditions and steel chemistry on strain induced austenite to ferrite transformation and the formation of ultrafine ferrite. The critical strain for dynamic strain induced transformation increased with increasing carbon equivalence, deformation temperature and austenite grain size. The deformation structure in the austenite grains changes with the thermomechanical processing conditions. Drawing on these results and the current literature, the important factors for the production of ultrafine ferrite are described and a mechanism is proposed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ultrafine ferrite can be formed in steels through relatively simple thermomechanical processes. The ferrite nucleates intragranularly within the austenite grain on deformation features, which are favoured by heavy shear and large effective strains. It is also possible to produce ultrafine microstructures under multipass deformation conditions, although these may be due to dynamic recovery rather than strain induced transformation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel single-pass hot strip rolling process has been developed in which ultra-fine (<2 μm) ferrite grains form at the surface of hot rolled strip in two low carbon steels with average austenite grain sizes above 200 μm. Two experiments were performed on strip that had been re-heated to 1250°C for 300 s and air-cooled to the rolling temperatures. The first involved hot rolling a sample of 0.09 wt.%C–1.68Mn–0.22Si–0.27Mo steel (steel A) at 800°C, which was just above the Ar3 of this sample, while the second involved hot rolling a sample of 0.11C–1.68Mn–0.22Si steel (steel B) at 675°C, which is just below the Ar3 temperature of the sample. After air cooling, the surface regions of strip of both steel A and B consisted of ultra-fine ferrite grains which had formed within the large austenite grains, while the central regions consisted of a bainitic microstructure. In the case of steel B, a network of allotriomorphic ferrite delineated the prior-austenite grain boundaries throughout the strip cross-section. Based on results from optical microscopy and scanning/transmission electron microscopy, as well as bulk X-ray texture analysis and microtextural analysis using Electron Back-Scattered Diffraction (EBSD), it is shown that the ultra-fine ferrite most likely forms by a process of rapid intragranular nucleation during, or immediately after, deformation. This process of inducing intragranular nucleation of ferrite by deformation is referred to as strain-induced transformation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A C-Mn-Nb-Ti steel was deformed by hot torsion to study ultrafine ferrite formation through dynamic strain-induced transformation (DSIT) in conjunction with air cooling. A systematic study was carried out first to evaluate the effect of deformation temperature and prior austenite grain size on the critical strain for ultrafine ferrite formation (ε C,UFF) through single-pass deformation. Then, multiple deformations in the nonrecrystallization region were used to study the effect of thermomechanical parameters (i.e., strain, deformation temperature, etc.) on ε C,UFF. The multiple deformations in the nonrecrystallization region significantly reduced ε C,UFF, although the total equivalent strain for a given thermomechanical condition was higher than that required in single-pass deformation. The current study on a Ni-30Fe austenitic model alloy revealed that laminar microband structures were the key intragranular defects in the austenite for nucleation of ferrite during the hot torsion test. The microbands were refined and overall misorientation angle distribution increased with a decrease in the deformation temperature for a given thermomechanical processing condition. For nonisothermal multipass deformation, there was some contribution to the formation of high-angle microband boundaries from strains at higher temperature, although the strains were not completely additive.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel approach was used to produce an ultrafine grain structure in low carbon steels with a wide range of hardenability. This included warm deformation of supercooled austenite followed by reheating in the austenite region and cooling (RHA). The ultrafine ferrite structure was independent of steel composition. However, the mechanism of ferrite refinement hanged with the steel quench hardenability. In a relatively low hardenable steel, the ultrafine structure was produced through dynamic strain-induced transformation, whereas the ferrite refinement was formed by static transformation in steels with high quench hardenability. The use of a model Ni–30Fe austenitic alloy revealed that the deformation temperature has a strong effect on the nature of the intragranular defects. There was a transition temperature below which the cell dislocation structure changed to laminar microbands. It appears that the extreme refinement of ferrite is due to the formation of extensive high angle intragranular defects at these low deformation temperatures that then act as sites for static transformation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The deformation and recrystallization behaviour of a range of Nb microalloyed steels has been studied using hot torsion. This work focuses on the change from strain dependent to strain independent recrystallization behaviour as a function of the alloy content, initial microstructure and deformation conditions. It is found that there is a complex interaction between deformation, recrystallization and strain induced precipitation, which has significant implications for controlled rolling in hot strip and plate mills. The data also revealed that the pre-existing precipitates did not influence the behaviour of post deformation softening.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ultrafine ferrite grain sizes were produced in a 0.11C-1.6Mn-0.2Si steel by torsion testing isothermally at 675 °C after air cooling from 1250 °C. The ferrite was observed to form intragranularly beyond a von Mises equivalent tensile strain of approximately 0.7 to 0.8 and the number fraction of intragranular ferrite grains continued to increase as the strain level increased. Ferrite nucleated to form parallel and closely spaced linear arrays or “rafts” of many discrete ultrafine ferrite grains. It is shown that ferrite nucleates during deformation on defects developed within the austenite parallel to the macroscopic shear direction (i.e., dynamic strain-induced transformation). A model austenitic Ni-30Fe alloy was used to study the substructure developed in the austenite under similar test conditions as that used to induce intragranular ferrite in the steel. It is shown that the most prevalent features developed during testing are microbands. It is proposed that high-energy jogged regions surrounding intersecting microbands provide potential sites for ferrite nucleation at lower strains, while at higher strains, the walls of the microbands may also act as nucleation sites.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The major challenge for thermomechanical processing is to extend grain refinement towards lower average grain sizes. However, there is also a need to provide a better understanding of the mechanisms through which the refinement processes proceed. Many recent proposals for advanced thermomechanical processing rely on the dynamic strain induced transformation (DSIT), and the dynamic recrystallisation of austenite as the main refinement mechanisms. These mechanisms are still not fully understood and their clarification can be expected to lead to even greater levels of refinement. The current review examines the roles of ferrite recrystallisation , DSIT and initial austenite grain size. It is shown that although the ferrite recrystallisation mechanism in DSIT has certain similarities with the well known continuous dynamic recrystallisation (CDRX), it is significantly affected by the transformed ferrite grain size. Also, reducing the initial austenite grain size increases the recrystallisation rate in the strain dependent as well as strain independent regions. These results show that the traditional concept of metadynamic recrystallisation is insufficient to explain the changes in grain size following deformation. An alternative explanation is presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a descriptive model to explain the mechanisms involved in the development of ultrafine grained structure in steels through dynamic strain induced transformation. The model considers the microstructural evolution during and after deformation as well as the role of different process variables. A key factor is the competition between nucleation and growth, where it is shown that many potential nuclei can be lost under certain conditions leading to a mixed or coarser grain size.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The strengthening mechanism responsible for the unique combination of ultimate tensile strength and elongation in a multiphase Fe-0.2C-1.5Mn-1.2Si-0.3Mo-0.6Al-0.02Nb (wt%) steel was studied. The microstructures with different volume fraction of polygonal fenite, bainite and retained austenite were simulated by controlled thermomechanical processing. The interupted tensile test was used to study the bainitic ferrite, retained austenite and polygonal ferrite behavior as a function of plastic strain. X-ray analysis was used to characterize the volume fraction and carbon content of retained austenite. TEM and heat-tinting were utilized to analyze the effect of bainitic fenite morphology on the strain induced transformation of retained austenite and retained austenite twinning as a function of strain in the bulk material. The study has shown that the austenite twinning mechanism is more preferable than the transformation induced plasticity mechanism during the early stages of deformation for a microstructure containing I5% polygonal ferrite, while the transformation induced plasticity effect is the main mechanism in when there is 50% of polygonal ferrite in the microstructure. The baillitic fenite morphology affects the deformation mode of retained austenite during straining. The polygonal fenite behavior during straining depends on dislocation substructure tonned due to the deformation and the additional mobile dislocations caused by the TRIP effect. TRIP and TWIP effects depend not only on the chemical and mechanical stability of retained austenite, but also on the interaction of the phases during straining.