970 resultados para SPECTROSCOPIC ANALYSIS
Resumo:
A thermoresponsive, supramolecular nanocomposite has been prepared by the addition of pyrenyl functionalized gold nanoparticles (AuNPs) to a polydiimide that contains receptor residues designed to form defined complexes with pyrene. The novel pyrenyl-functionalized AuNPs (P-AuNPs) were characterized by transmission electron microscopy, with surface functionalization confirmed by infrared and UV–visible spectroscopic analyses. Mixing solutions of the P-AuNPs and a π-electron-deficient polydiimide resulted in the formation of electronically complementary, chain-folded and π–π-stacked complexes, so affording a new supramolecular nanocomposite network which precipitated from solution. The P-AuNPs bind to the polydiimide via π–π stacking interactions to create supramolecular cross-links. UV–visible spectroscopic analysis confirmed the thermally reversible nature of the complexation process, and transmission electron microscopy (TEM), infrared spectroscopy (IR), and differential scanning calorimetry (DSC) were used to characterize the supramolecular-nanocomposite material. The supramolecular polymer network is insoluble at room temperature, yet may be dissolved at temperatures above 60 °C. The thermal reversibility of this system is maintained over five heat/cool cycles without diminishment of the network characteristics. In contrast to the individual components, the nanocomposite formed self-supporting films, demonstrating the benefit of the supramolecular network in terms of mechanical properties. Control experiments probing the interactions between a model diimide compound that can also form a π-stacked complex with the π-electron rich pyrene units on P-AuNPs showed that, while complexation was readily apparent, precipitation did not occur because a supramolecular cross-linked network system could not be formed with this system.
Resumo:
The synthesis and crystal structures of three nonheme di-iron(III) complexes with a tridentate N,N,O Schiff-base ligand, 2-({[2-(dimethylamino) ethyl] imino} methyl) phenol (HL), are reported. Complexes [Fe2OL2(NCO)(2)] (1a) and [Fe2OL2(SAL)(2)]center dot H2O [SAL = o-(CHO)C6H4O-] (1b) are unsupported mu-oxido-bridged dimers, and [Fe-2(OH)L-2(HCOO)(2)-(Cl)] (2) is a mu-hydroxido-bridged dimer supported by a formato bridging ligand. All complexes have been characterized by X-ray crystallography and spectroscopic analysis. Complex 1b has been reported previously; however, it has been reinvestigated to confirm the presence of a crucial water molecule in the solid state. Structural analyses show that in 1a the iron atoms are pentacoordinate with a bent Fe-O-Fe angle [142.7(2)degrees], whereas in 2 the metal centers are hexacoordinate with a normal Fe-OH-Fe bridging angle [137.9(2)degrees]. The Fe-O-Fe angles in complexes 1a and 1b differ significantly to those usually shown by (mu-oxido) Fe-III complexes. A theoretical study has been performed in order to rationalize this deviation. Moreover, the influence of the water molecule observed in the solid-state structure of 1b on the Fe-O-Fe angle is also analyzed theoretically.
Resumo:
Traditionally functional magnetic resonance imaging (fMRI) has been used to map activity in the human brain by measuring increases in the Blood Oxygenation Level Dependent (BOLD) signal. Often accompanying positive BOLD fMRI signal changes are sustained negative signal changes. Previous studies investigating the neurovascular coupling mechanisms of the negative BOLD phenomenon have used concurrent 2D-optical imaging spectroscopy (2D-OIS) and electrophysiology (Boorman et al., 2010). These experiments suggested that the negative BOLD signal in response to whisker stimulation was a result of an increase in deoxy-haemoglobin and reduced multi-unit activity in the deep cortical layers. However, Boorman et al. (2010) did not measure the BOLD and haemodynamic response concurrently and so could not quantitatively compare either the spatial maps or the 2D-OIS and fMRI time series directly. Furthermore their study utilised a homogeneous tissue model in which is predominantly sensitive to haemodynamic changes in more superficial layers. Here we test whether the 2D-OIS technique is appropriate for studies of negative BOLD. We used concurrent fMRI with 2D-OIS techniques for the investigation of the haemodynamics underlying the negative BOLD at 7 Tesla. We investigated whether optical methods could be used to accurately map and measure the negative BOLD phenomenon by using 2D-OIS haemodynamic data to derive predictions from a biophysical model of BOLD signal changes. We showed that despite the deep cortical origin of the negative BOLD response, if an appropriate heterogeneous tissue model is used in the spectroscopic analysis then 2D-OIS can be used to investigate the negative BOLD phenomenon.
Resumo:
Modeling aging and age-related pathologies presents a substantial analytical challenge given the complexity of gene−environment influences and interactions operating on an individual. A top-down systems approach is used to model the effects of lifelong caloric restriction, which is known to extend life span in several animal models. The metabolic phenotypes of caloric-restricted (CR; n = 24) and pair-housed control-fed (CF; n = 24) Labrador Retriever dogs were investigated by use of orthogonal projection to latent structures discriminant analysis (OPLS-DA) to model both generic and age-specific responses to caloric restriction from the 1H NMR blood serum profiles of young and older dogs. Three aging metabolic phenotypes were resolved: (i) an aging metabolic phenotype independent of diet, characterized by high levels of glutamine, creatinine, methylamine, dimethylamine, trimethylamine N-oxide, and glycerophosphocholine and decreasing levels of glycine, aspartate, creatine and citrate indicative of metabolic changes associated largely with muscle mass; (ii) an aging metabolic phenotype specific to CR dogs that consisted of relatively lower levels of glucose, acetate, choline, and tyrosine and relatively higher serum levels of phosphocholine with increased age in the CR population; (iii) an aging metabolic phenotype specific to CF dogs including lower levels of liproprotein fatty acyl groups and allantoin and relatively higher levels of formate with increased age in the CF population. There was no diet metabotype that consistently differentiated the CF and CR dogs irrespective of age. Glucose consistently discriminated between feeding regimes in dogs (≥312 weeks), being relatively lower in the CR group. However, it was observed that creatine and amino acids (valine, leucine, isoleucine, lysine, and phenylalanine) were lower in the CR dogs (<312 weeks), suggestive of differences in energy source utilization. 1H NMR spectroscopic analysis of longitudinal serum profiles enabled an unbiased evaluation of the metabolic markers modulated by a lifetime of caloric restriction and showed differences in the metabolic phenotype of aging due to caloric restriction, which contributes to longevity studies in caloric-restricted animals. Furthermore, OPLS-DA provided a framework such that significant metabolites relating to life extension could be differentiated and integrated with aging processes.
Resumo:
The globular cluster HP 1 is projected on the bulge, very close to the Galactic center. The Multi-Conjugate Adaptive Optics Demonstrator on the Very Large Telescope allowed us to acquire high-resolution deep images that, combined with first epoch New Technology Telescope data, enabled us to derive accurate proper motions. The cluster and bulge fields` stellar contents were disentangled through this process and produced an unprecedented definition in color-magnitude diagrams of this cluster. The metallicity of [Fe/H] approximate to -1.0 from previous spectroscopic analysis is confirmed, which together with an extended blue horizontal branch imply an age older than the halo average. Orbit reconstruction results suggest that HP 1 is spatially confined within the bulge.
Resumo:
Films of amorphous aluminium nitride (AlN) were prepared by conventional radio frequency sputtering of an Al + Cr target in a plasma of pure nitrogen. The Cr-to-Al relative area determines the Cr content, which remained in the similar to 0-3.5 at% concentration range in this study. Film deposition was followed by thermal annealing of the samples up to 1050 degrees C in an atmosphere of oxygen and by spectroscopic characterization through energy dispersive x-ray spectrometry, photoluminescence and optical transmission measurements. According to the experimental results, the optical-electronic properties of the Cr-containing AlN films are highly influenced by both the Cr concentration and the temperature of the thermal treatments. In fact, thermal annealing at 1050 degrees C induces the development of structures that, because of their typical size and distinctive spectral characteristics, were designated by ruby microstructures (RbMSs). These RbMSs are surrounded by a N-rich environment in which Cr(3+) ions exhibit luminescent features not present in other Cr(3+)-containing systems such as ruby, emerald or alexandrite. The light emissions shown by the RbMSs and surroundings were investigated according to the Cr concentration and temperature of measurement, allowing the identification of several Cr(3+)-related luminescent lines. The main characteristics of these luminescent lines and corresponding excitation-recombination processes are presented and discussed in view of a detailed spectroscopic analysis.
Resumo:
Deletion of COQ10 in Saccharomyces cerevisiae elicits a respiratory defect characterized by the absence of cytochrome c reduction, which is correctable by the addition of exogenous diffusible coenzyme Q(2). Unlike other coq mutants with hampered coenzyme Q(6) (Q(6)) synthesis, coq10 mutants have near wild-type concentrations of Q(6). In the present study, we used Q-cycle inhibitors of the coenzyme QH(2)-cytochrome c reductase complex to assess the electron transfer properties of coq10 cells. Our results show that coq10 mutants respond to antimycin A, indicating an active Q-cycle in these mutants, even though they are unable to transport electrons through cytochrome c and are not responsive to myxothiazol. EPR spectroscopic analysis also suggests that wild-type and coq10 mitochondria accumulate similar amounts of Q(6) semiquinone, despite a lower steady-state level of coenzyme QH(2)-cytochrome c reductase complex in the coq10 cells. Confirming the reduced respiratory chain state in coq10 cells, we found that the expression of the Aspergillus fumigatus alternative oxidase in these cells leads to a decrease in antimycin-dependent H(2)O(2) release and improves their respiratory growth.
Resumo:
The methanol extract from aerial parts of the Peperomia blanda (Piperaceae) yielded two C-glycosyl-flavones. Their structures were elucidated on the basis of extensive spectroscopic analysis, including 1D and 2D NMR, chemical transformation and comparison with the related known compounds. The structure of the new flavonoids were established as 4`-methoxy-vitexin 7-O-beta-D-xylopyranoside (1) (7-O-beta-D-xylopyranosyl-8-C-beta-D-glucopyranosyl-4`-methoxy-apigenin) and vicenin-2 (2). The antioxidant activity of both compounds was investigated using the DPPH assay. Both compounds showed only modest activity, with IC50 values of 357.2 mu M for 1, and 90.5 mu M for 2. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Accurate potential energy curves, dissociation energies and spectroscopic constants for several low-lying doublet and quartet electronic states of CaAl were investigated using the CASSCF/MRCI methodology, and the cc-pVQZ basis set. Our results represent an improvement over a previous theoretical description, and also characterizes new higher excited states not previously investigated, thus confirming the assignment of four excited states investigated experimentally. With the theoretical transition moment functions, transition probabilities and radiative lifetimes were estimated via Einstein spontaneous emission coefficients. (c) 2008 Elsevier B. V. All rights reserved.
Resumo:
The human protein Ki-1/57 was first identified through the cross reactivity of the anti-CD30 monoclonal antibody Ki-1; in Hodgkin lymphoma cells. The expression of Ki-1/57 in diverse cancer cells and its phosphorylation in peripheral blood leukocytes after mitogenic activation suggested its possible role in cell signaling. Ki-1/57 interacts with several other regulatory proteins involved in cellular signaling, transcriptional regulation and RNA metabolism, suggesting it may have pleiotropic functions. In a previous spectroscopic analysis, we observed a low content of secondary structure for Ki-1/57 constructs. Here, Circular dichroism experiments, in vitro RNA binding analysis, and limited proteolysis assays of recombinant Ki-1/57(122-413) and proteolysis assays of endogenous full length protein from human HEK293 cells suggested that Ki-1/57 has characteristics of an intrinsically unstructured protein. Small-angle X-ray scattering (SAXS) experiments were performed with the C-terminal fragment Ki-1/57(122-413). These results indicated an elongated shape and a partially unstructured conformation of the molecule in solution, confirming the characteristics of an intrinsically unstructured protein. Experimental curves together with ab initio modeling approaches revealed an extended and flexible molecule in solution. An elongated shape was also observed by analytical gel filtration. Furthermore, sedimentation velocity analysis suggested that Ki-1/57 is a highly asymmetric protein. These findings may explain the functional plasticity of Ki-1/57, as suggested by the wide array of proteins with which it is capable of interacting in yeast two-hybrid interaction assays.
Resumo:
Citrus sudden death (CSD) is a new disease of sweet orange and mandarin trees grafted on Rangpur lime and Citrus volkameriana rootstocks. It was first seen in Brazil in 1999, and has since been detected in more than four million trees. The CSD causal agent is unknown and the current hypothesis involves a virus similar to Citrus tristeza virus or a new virus named Citrus sudden death-associated virus. CSD symptoms include generalized foliar discoloration, defoliation and root death, and, in most cases, it can cause tree death. One of the unique characteristics of CSD disease is the presence of a yellow stain in the rootstock bark near the bud union. This region also undergoes profound anatomical changes. In this study, we analyse the metabolic disorder caused by CSD in the bark of sweet orange grafted on Rangpur lime by nuclear magnetic resonance (NMR) spectroscopy and imaging. The imaging results show the presence of a large amount of non-functional phloem in the rootstock bark of affected plants. The spectroscopic analysis shows a high content of triacylglyceride and sucrose, which may be related to phloem blockage close to the bud union. We also propose that, without knowing the causal CSD agent, the determination of oil content in rootstock bark by low-resolution NMR can be used as a complementary method for CSD diagnosis, screening about 300 samples per hour.
Resumo:
Two C,O-diglycosylated compounds, the anthrone picramnioside F, and the oxanthrone mayoside C, were isolated from the stem bark of Picramnia teapensis, along with the previously reported anthraquinones, 1-O-beta -D- and 8-O-beta -D-glucopyranosyl emodin. The compounds were separated by recycling-HPLC, and their structures were determined on the basis of spectroscopic analysis. CD measurements were used to establish the absolute configuration of the anthrone and oxanthrone. The antifungal activity of 1-O-beta -D- and 8-O--D-glucopyranosyl emodin against Leucoagaricus gongilophorus was shown to be similar to that of the lignan sesamin. (C) 2000 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Six new sesquiterpene lactones, annuolide H ( 3), helivypolides F, H-J ( 4, 11-13), and helieudesmanolide A ( 6), together with known compounds, were isolated from polar bioactive fractions of Helianthus annuus cv. SH-222 and Stella fresh leaf water extracts. Spectroscopic analysis of the new data for 1,2-anhydroniveusin A and 1-methoxy-4,5-dihydroniveusin A corrects some previous assignments. The compounds were tested using the etiolated wheat coleoptile bioassay, and the most active compounds were assayed in standard target species ( STS) ( Lepidium sativum, Allium cepa, Lactuca sativa, Lycopersicon esculentum, and Triticum aestivum) from 5 x 10(-4) to 10(-5) M. The most phytotoxic compounds were helivypolide F and 15-hydroxy-3-dehydrodeoxyfruticin, both of which have a carbonyl group at C-3 conjugated with two double bonds.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Galactic stellar clusters have a great variety of physical properties that make valuable probes of stellar and galactic chemical evolution. Current studies show a discrepancy between the standard evolutionary models and observations, mainly considering the level of mixing and convective dilution of light elements, as well as to the evolution of the angular momentum. In order to better settle some of these properties, we present a detailed spectroscopic analysis of 28 evolved stars, from the turn-off to the RGB, belonging to the stellar open cluster M67. The observations were performed using UVES+FLAMES at VLT/UT2. We determined stellar parameters and metallicity from LTE analysis of Fe I and Fe II lines between 420 1100 nm. The Li abundance was obtained using the line at 6707.78 ˚A, for the whole sample of stars. The Li abundances of evolved stars of M67 present a gradual decreasing when decreasing the effective temperature. The Li dilution factor for giant stars of M67 with Teff ∼ 4350K is at least 2300 times greater than that predicted by standard theory for single field giant stars. The Li abundance as a function of rotation exhibits a good correlation for evolved stars of M67, with a much smaller dispersion than the field evolved stars. The mass and the age seem to be some of the parameters that influence this connection. We discovered a Li-rich subgiant star in M67 (S1242). It is member of a spectroscopic binary system with a high eccentricity. Its Li abundance is 2.7, the highest Li content ever measured for an evolved star in M67. Two possibilities could explain this anomalous Li content: (i) preservation of the Li at the post turn off stage due to tidal effects, or (ii) an efficient dredge-up of Li, hidden below the convective zone by atomic diffusion occurring in the post turn off stage. We also study the evolution of the angular momentum for the evolved stars in M67. The results are in agreement with previous studies dedicated to evolved stars of this cluster, where stars in the same region of the CM-diagram have quite similar rotations, but with values that indicate an extra breaking along the main sequence. Finally, we analize the distributions of the average rotational velocity and of the average Li abundance as a function of age. With relation to the average Li abundances, stars in clusters and field stars present the same type of exponencial decay law t−β. Such decay is observed for ages lesser than 2 Gyr. From this age, is observed that the average Li abundance remain constant, differently of the one observed in the rotation age connection, where the average rotational velocity decreases slowly with age