982 resultados para SPATIAL VARIABILITY
Resumo:
Radioactive soil-contamination mapping and risk assessment is a vital issue for decision makers. Traditional approaches for mapping the spatial concentration of radionuclides employ various regression-based models, which usually provide a single-value prediction realization accompanied (in some cases) by estimation error. Such approaches do not provide the capability for rigorous uncertainty quantification or probabilistic mapping. Machine learning is a recent and fast-developing approach based on learning patterns and information from data. Artificial neural networks for prediction mapping have been especially powerful in combination with spatial statistics. A data-driven approach provides the opportunity to integrate additional relevant information about spatial phenomena into a prediction model for more accurate spatial estimates and associated uncertainty. Machine-learning algorithms can also be used for a wider spectrum of problems than before: classification, probability density estimation, and so forth. Stochastic simulations are used to model spatial variability and uncertainty. Unlike regression models, they provide multiple realizations of a particular spatial pattern that allow uncertainty and risk quantification. This paper reviews the most recent methods of spatial data analysis, prediction, and risk mapping, based on machine learning and stochastic simulations in comparison with more traditional regression models. The radioactive fallout from the Chernobyl Nuclear Power Plant accident is used to illustrate the application of the models for prediction and classification problems. This fallout is a unique case study that provides the challenging task of analyzing huge amounts of data ('hard' direct measurements, as well as supplementary information and expert estimates) and solving particular decision-oriented problems.
Resumo:
Taking into account that the sampling intensity of soil attributes is a determining factor for applying of concepts of precision agriculture, this study aims to determine the spatial distribution pattern of soil attributes and corn yield at four soil sampling intensities and verify how sampling intensity affects cause-effect relationship between soil attributes and corn yield. A 100-referenced point sample grid was imposed on the experimental site. Thus, each sampling cell encompassed an area of 45 m² and was composed of five 10-m long crop rows, where referenced points were considered the center of the cell. Samples were taken from at 0 to 0.1 m and 0.1 to 0.2 m depths. Soil chemical attributes and clay content were evaluated. Sampling intensities were established by initial 100-point sampling, resulting data sets of 100; 75; 50 and 25 points. The data were submitted to descriptive statistical and geostatistics analyses. The best sampling intensity to know the spatial distribution pattern was dependent on the soil attribute being studied. The attributes P and K+ content showed higher spatial variability; while the clay content, Ca2+, Mg2+ and base saturation values (V) showed lesser spatial variability. The spatial distribution pattern of clay content and V at the 100-point sampling were the ones which best explained the spatial distribution pattern of corn yield.
Resumo:
There is an increasing demand for detailed maps that represent in a simplified way the knowledge of the variability of a particular area or region maps. The objective was to outline precision boundaries among areas with different accuracy variability standards using magnetic susceptibility and geomorphic surfaces. The study was conducted in an area of 110 ha, which identified three compartment landscapes based on the geomorphic surfaces model. To determinate pH, organic matter, phosphorus, potassium and magnesium, the total sand and clay, 514 soil samples were collected at depths of 0-0.20 m and 0.60-0.80 m. The sum of base, cationic exchange capacity and base saturation were calculated and the magnetic susceptibility was evaluated in the laboratory using a system based on a balance of analytical precision method. Geomorphic surfaces identification allowed setting specific management areas (locations with maximum homogeneity of soil attributes). The map of spatial variability of magnetic susceptibility can be used to validate the precise boundaries among geomorphic surfaces identified in the field and infer the variability of clay content and soil base saturation.
Resumo:
ABSTRACT Precision agriculture adoption in Brazilian apple orchards is still incipient. This study aimed at evaluating the spatial variability of certain soil properties as soil density, soil penetration resistance, electrical conductivity, yield, and fruit quality in an apple orchard through digital mapping, as well as assessing the correlation between these factors by means of geostatistics, establishing management zones. Forty representative points were set within 2.5 hectares of apple orchard, wherein soil samples were collected and analyzed, besides measurements of fruit quality (Brix degree, size or diameter, pulp firmness and color) to generate an overall index quality. We concluded that the fruit quality indexes, when isolated, did not show strong spatial dependence, unlike the index of fruit quality (FQI), derived from a combination of these parameters, allowing orchard planning according to management zones based on quality.
Resumo:
Understanding spatial distribution of weeds in the crop enables to perform localized herbicide applications, increasing the technical and economic efficiency of operations and reducing environmental impacts. This work aimed to characterize the spatial and phytosociological variability of weeds occurring in soybean commercial field. It was conducted in an agricultural area located at the municipality of Boa Vista das Missões - RS, during the 2010/2011 harvest season. The area, that had been managed under no-tillage with soybean monoculture (summer) for five years, was divided in regular squares of 50 x 50 m (0.25 ha), totalizing 356 points. For species identification, 0.5 x 0.5 m sample squares were used. During the survey, 1,739 individuals were identified, distributed in 19 species of 13 families. The weed species Cardiospermum halicacabum, Digitaria horizontalis, Urochloa plantaginea and Raphanus raphanistrum showed the highest population variation in the area; however, only C. halicacabum, U. plantaginea and R. raphanistrum stood out based on the Importance Index Value (IVI). Localized management strategies considering the spatial variability of weed species placed in the Magnoliopsidas and Liliopsidas group show a high potential for use in soybean crop. The results show that the sampling method through regular grid was capable of characterizing the occurrence, population density and spatial variability of weed species in soybean crop.
Resumo:
Increase in sea surface temperature with global warming has an impact on coastal upwelling. Past two decades (1988 to 2007) of satellite observed sea surface temperatures and space borne scatterometer measured winds have provided an insight into the dynamics of coastal upwelling in the southeastern Arabian Sea, in the global warming scenario. These high resolution data products have shown inconsistent variability with a rapid rise in sea surface temperature between 1992 and 1998 and again from 2004 to 2007. The upwelling indices derived from both sea surface temperature and wind have shown that there is an increase in the intensity of upwelling during the period 1998 to 2004 than the previous decade. These indices have been modulated by the extreme climatic events like El–Nino and Indian Ocean Dipole that happened during 1991–92 and 1997–98. A considerable drop in the intensity of upwelling was observed concurrent with these events. Apart from the impact of global warming on the upwelling, the present study also provides an insight into spatial variability of upwelling along the coast. Noticeable fact is that the intensity of offshore Ekman transport off 8oN during the winter monsoon is as high as that during the usual upwelling season in summer monsoon. A drop in the meridional wind speed during the years 2005, 2006 and 2007 has resulted in extreme decrease in upwelling though the zonal wind and the total wind magnitude are a notch higher than the previous years. This decrease in upwelling strength has resulted in reduced productivity too.
Resumo:
The distribution and variability of water vapor and its links with radiative cooling and latent heating via precipitation are crucial to understanding feedbacks and processes operating within the climate system. Column-integrated water vapor (CWV) and additional variables from the European Centre for Medium-Range Weather Forecasts (ECMWF) 40-year reanalysis (ERA40) are utilized to quantify the spatial and temporal variability in tropical water vapor over the period 1979–2001. The moisture variability is partitioned between dynamical and thermodynamic influences and compared with variations in precipitation provided by the Climate Prediction Center Merged Analysis of Precipitation (CMAP) and the Global Precipitation Climatology Project (GPCP). The spatial distribution of CWV is strongly determined by thermodynamic constraints. Spatial variability in CWV is dominated by changes in the large-scale dynamics, in particular associated with the El Niño–Southern Oscillation (ENSO). Trends in CWV are also dominated by dynamics rather than thermodynamics over the period considered. However, increases in CWV associated with changes in temperature are significant over the equatorial east Pacific when analyzing interannual variability and over the north and northwest Pacific when analyzing trends. Significant positive trends in CWV tend to predominate over the oceans while negative trends in CWV are found over equatorial Africa and Brazil. Links between changes in CWV and vertical motion fields are identified over these regions and also the equatorial Atlantic. However, trends in precipitation are generally incoherent and show little association with the CWV trends. This may in part reflect the inadequacies of the precipitation data sets and reanalysis products when analyzing decadal variability. Though the dynamic component of CWV is a major factor in determining precipitation variability in the tropics, in some regions/seasons the thermodynamic component cancels its effect on precipitation variability.
Resumo:
The parameterization of surface heat-flux variability in urban areas relies on adequate representation of surface characteristics. Given the horizontal resolutions (e.g. ≈0.1–1km) currently used in numerical weather prediction (NWP) models, properties of the urban surface (e.g. vegetated/built surfaces, street-canyon geometries) often have large spatial variability. Here, a new approach based on Urban Zones to characterize Energy partitioning (UZE) is tested within a NWP model (Weather Research and Forecasting model;WRF v3.2.1) for Greater London. The urban land-surface scheme is the Noah/Single-Layer Urban Canopy Model (SLUCM). Detailed surface information (horizontal resolution 1 km)in central London shows that the UZE offers better characterization of surface properties and their variability compared to default WRF-SLUCM input parameters. In situ observations of the surface energy fluxes and near-surface meteorological variables are used to select the radiation and turbulence parameterization schemes and to evaluate the land-surface scheme
Resumo:
The subgrid-scale spatial variability in cloud water content can be described by a parameter f called the fractional standard deviation. This is equal to the standard deviation of the cloud water content divided by the mean. This parameter is an input to schemes that calculate the impact of subgrid-scale cloud inhomogeneity on gridbox-mean radiative fluxes and microphysical process rates. A new regime-dependent parametrization of the spatial variability of cloud water content is derived from CloudSat observations of ice clouds. In addition to the dependencies on horizontal and vertical resolution and cloud fraction included in previous parametrizations, the new parametrization includes an explicit dependence on cloud type. The new parametrization is then implemented in the Global Atmosphere 6 (GA6) configuration of the Met Office Unified Model and used to model the effects of subgrid variability of both ice and liquid water content on radiative fluxes and autoconversion and accretion rates in three 20-year atmosphere-only climate simulations. These simulations show the impact of the new regime-dependent parametrization on diagnostic radiation calculations, interactive radiation calculations and both interactive radiation calculations and in a new warm microphysics scheme. The control simulation uses a globally constant f value of 0.75 to model the effect of cloud water content variability on radiative fluxes. The use of the new regime-dependent parametrization in the model results in a global mean which is higher than the control's fixed value and a global distribution of f which is closer to CloudSat observations. When the new regime-dependent parametrization is used in radiative transfer calculations only, the magnitudes of short-wave and long-wave top of atmosphere cloud radiative forcing are reduced, increasing the existing global mean biases in the control. When also applied in a new warm microphysics scheme, the short-wave global mean bias is reduced.
Resumo:
A lagarta-do-cartucho, Spodoptera frugiperda (J.E. Smith), é uma das principais pragas do milho nas Américas. O estudo de sua distribuição espacial é fundamental para a utilização de estratégias de controle, otimização de técnicas de amostragens, determinação de danos econômicos e incorporação de um programa de agricultura de precisão. em uma área cultivada com milho foram realizadas amostragens com intervalo semanal, correspondendo ao estádio vegetativo que compreende desde a germinação até o pendoamento. Foram amostradas 10 plantas ao acaso por parcela, no total de 2000 plantas em cada amostragem. A produtividade foi obtida através da colheita de todas as parcelas que eram pesadas separadamente no campo e em cada parcela foram coletadas 15 espigas aleatoriamente para estimar o comprimento e o diâmetro médio. As análises espaciais, utilizando geoestatística, mostraram que o modelo esférico apresentou o melhor ajuste às lagartas pequenas. À medida que as lagartas foram se desenvolvendo sua distribuição foi tornando aleatória, representada por um modelo ajustado por uma reta, não tendo sido detectado nenhum tipo de dependência espacial nos pontos de amostragem. A produtividade e o diâmetro e comprimento da espiga foram descritos por modelos esféricos, indicando uma variabilidade espacial nos parâmetros de produtividade na área cultivada. A geoestatística mostrou-se promissora para a aplicação de métodos precisos no controle integrado de pragas.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The CERES-Maize model was used to estimate the spatial variability in corn (Zea mays L.) yield for 1995 and 1996 using data measured on soil profiles located on a 30.5 m grid within a 3.9 ha field in Michigan. The model was calibrated for one grid profile for the 1995 and then used to simulate corn yield for all grid points for the 2 yrs. For the calibration for 1995, the model predicted corn yield within 2%. For 1995, the model predicted yield variability very well (r(2) = 0.85), producing similar yield maps with differences generally within +/- 300 kg ha(-1). For 1996, the model predicted low grain yields (1167 kg ha(-1)) compared with measured (8928 kg ha(-1)) because the model does not account for horizontal water movement within the landscape or water contributions from a water table. Under nonlimiting water conditions, the model performed well (average of 8717 vs. 8948 kg ha(-1)) but under-estimated the measured yield variability.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Jurumirim is a large tropical reservoir with remarkable spatial gradients. This structure seems to be determined by a longitudinal gradient in the trophic conditions along the main axis of the reservoir. Nutrient-rich waters enter from the main tributary river, Paranapanema, and towards the dam there is a lacustrine zone that is deeper and more oligotrophic. Additional variability is derived from two important lateral components: the entrance of the Taquari River, the second largest tributary, bringing waters with higher pH and alkalinity; and the Ribeirão das Posses arm, a sheltered bay where the hydrodynamic conditions promote a high growth of phytoplankton. However, such a spatial pattern is not static. It can become either more defined, during the dry season (late autumn and winter), or less evident, during the expansion of the lotic conditions in the rainy period (late spring and summer). Seasonal processes of stratification/destratification determine the temporal changes in the lacustrine zone but, unlike the upstream regions, the dam zone of the reservoir seems to be little affected by periodic pulses of modifications produced by intensive rains. The presence of extensive wetlands and oxbow lagoons in the mouth zones of the main rivers also constitutes an important source of spatial variability and should be considered in the future.