974 resultados para SODIUM-SULFONATE GROUPS
Resumo:
To evaluate the effect of a fluoride dentifrice containing sodium hexametaphosphate (HMP) on enamel demineralization in situ. This double-blind and cross-over study consisted of 3 phases (7 days each) in which 12 volunteers wore intraoral appliances containing four enamel bovine blocks. Specimens were treated (3×/day) with placebo (no F or HMP), 1100ppm F (1100F) and 1100F plus HMP1% (1100F-HMP1%) toothpastes, and the cariogenic challenge was performed using a 30% sucrose solution (6×/day). Final surface hardness, the percentage of surface hardness loss (%SH), the integrated loss of subsurface hardness (ΔKHN), as well as enamel calcium (Ca), phosphorus (P) and firmly-bound fluoride (F) were determined. Also, biofilm formed on the blocks were analyzed for F, Ca, P and insoluble extracellular polysaccharide (EPS) concentrations. Data were submitted 1-way ANOVA, followed by Student-Newman-Keuls' test (p<0.05). 1100F-HMP1% promoted the lowest %SH and ΔKHN among all groups (p<0.001). The addition of HMP1% to 1100F did not enhance enamel F uptake, but significantly increased enamel Ca concentrations (p<0.001). Similar EPS concentrations were seen for 1100F-HMP1% and 1100F groups (p>0.05). All the groups were supersaturated with respect to HA. However, only 1100F-HMP1% group was supersaturated with respect to CaF2 (p<0.05). The ionic activities of F(-), CaF(+) and HF(0) for the 1100F-HMP1% group were the highest among all groups (p<0.001). The addition of HMP1% to a conventional toothpaste significantly reduces enamel demineralization in situ when compared to 1100F. This dentifrice could be a viable alternative to patients at high risk of caries.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study evaluated the effect of fluoride gels, supplemented or not with sodium hexametaphosphate (HMP), on enamel erosive wear in situ. Twelve healthy volunteers wore palatal appliances containing four bovine enamel discs. Subjects were randomly allocated into four experimental phases (double-blind, crossover protocol) according to the gels: Placebo (no fluoride or HMP), 1% NaF, 2% NaF, and 1% NaF+9% HMP. Enamel discs were selected after polishing and surface hardness analysis, and treated only once with the respective gels prior to each experimental phase. Erosion (ERO) was performed by extra-oral immersion of the appliance in 0.05M citric acid, pH 3.2 (four times/day, five minutes each, 5 days). Additional abrasion (ERO+ABR) was produced on only two discs by toothbrushing with fluoridated dentifrice after ERO (four times/day, 30s, 5 days). The specimens were submitted to profilometry and hardness analysis. The results were analyzed by two-way ANOVA and the Student-Newman-Keuls test (p<0.05). The 1% NaF+9% HMP gel promoted significantly lower enamel wear for ERO compared to the other groups, being statistically lower than 1% NaF and Placebo for ERO+ABR. Similarly, the lowest values of integrated lesion area were found for 1% NaF+9% HMP and 2% NaF, respectively, for ERO and ERO+ABR. The addition of HMP to the 1% NaF gel promoted greater protective effect against ERO and ERO+ABR compared to the 1% NaF gel, achieving similar protective levels to those seen for the 2% NaF gel. Gel containing 1% NaF+9% HMP showed a high anti-erosive potential, being a safer alternative when compared to a conventional 2% NaF gel.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Mejillonesite, ideally NaMg(2)(PO(3)OH)(PO(4))(OH)center dot H(5)O(2), is a new mineral approved by the CNMNC (IMA 2010-068). It occurs as isolated crystal aggregates in thin zones in fine-grained opal-zeolite aggregate on the north slope of Cerro Mejillones, Antofagasta, Chile. Closely associated minerals are bobierrite, opal, clinoptilolite-Na, clinoptilolite-K, and gypsum. Mejillonesite forms orthorhombic, prismatic, and elongated thick tabular crystals up to 6 mm long, usually intergrown in radiating aggregates. The dominant form is pinacoid {100}. Prisms {hk0}, {h0l}, and {0kl} are also observed. The crystals are colorless, their streak is white, and the luster is vitreous. The mineral is transparent. It is non-fluorescent under ultraviolet light. Mohs' hardness is 4, tenacity is brittle. Cleavage is perfect on {100}, good on {010} and {001}, and fracture is stepped. The measured density is 2.36(1) g/cm(3); the calculated density is 2.367 g/cm(3). Mejillonesite is biaxial (-), alpha= 1.507(2), beta= 1.531(2), gamma= 1.531(2), 2V(meas) = 15(10)degrees, 2V(calc) = 0 degrees (589 nm). Orientation is X= a, Z= elongation direction. The mineral is non-pleochroic. Dispersion is r> v, medium. The IR spectrum contains characteristic bands of the Zundel cation (H(5)O(2)(+), or H(+)center dot 2H(2)O) and the groups P-OH and OH(-). The chemical composition is (by EDS, H(2)O by the Alimarin method, wt%): Na(2)O 9.19, MgO 26.82, P(2)O(5) 46.87, H(2)O 19, total 101.88. The empirical formula, based on 11 oxygen atoms, is Na(0.93)Mg(2.08)(PO(3)OH)(1.00) (PO(4)) (OH)(0.86) .0.95H(5)O(2) The strongest eight X-ray powder-diffraction lines [d in angstrom(I)(hkl)] are: 8.095(100)(200), 6.846(9) (210), 6.470(8)(111), 3.317(5)(302), 2.959(5)(132), 2.706(12)(113), 2.157(19)(333), and 2.153(9) (622). The crystal structure was solved on a single crystal (R = 0.055) and gave the following data: orthorhombic, Pbca, a = 16.295(1), b = 13.009(2), c = 8.434(1) angstrom, V= 1787.9(4) angstrom(3), Z = 8. The crystal structure of mejillonesite is based on a sheet (parallel to the b-c plane) formed by two types of MgO(6) octahedra, isolated tetrahedra PO(4) and PO(3)OH whose apical vertices have different orientation with respect to the sheet. The sheets are connected by interlayer, 5-coordinated sodium ions, proton hydration complexes, and hydroxyl groups. The structure of mejillonesite is related to that of angarfite, NaFe(5)(3+)(PO(4))(4)(OH)(4).4H(2)O and bakhchisaraitsevite, Na(2)Mg(5)(PO(4))(4)center dot 7H(2)O.
Resumo:
Dietary nitrite and nitrate have been reported as alternative sources of nitric oxide (NO). In this regard, we reported previously that sodium nitrite added to drinking water was able to exert antihypertensive effects in an experimental model of hypertension in a dose-dependent manner. Taking into consideration that nitrite is continuously converted to nitrate in the bloodstream, here we expanded our previous report and evaluate whether a single daily dose of sodium nitrite could exert antihypertensive effects in 2 kidney-1 clip (2K1C) hypertensive rats. Sham-operated and 2K1C rats were treated with vehicle or sodium nitrite (15 mg/kg/day) for 4 weeks. We evaluated the effects induced by sodium nitrite treatment on systolic blood pressure (SBP) and NO markers such as plasma nitrite, nitrite + nitrate (NOx), cGMP, and blood levels of nitrosyl-hemoglobin. In addition, we also evaluated effects of nitrite on oxidative stress and antioxidant enzymes. Dihydroethidium (DHE) was used to evaluate aortic reactive oxygen species (ROS) production by fluorescence microscopy, and plasma levels of thiobarbituric acid-reactive species (TBARS) were measured in plasma samples from all experimental groups. Red blood cell superoxide dismutase (SOD) and catalase activity were evaluated with commercial kits. Sodium nitrite treatment reduced SBP in 2K1C rats (P < 0.05). We found lower plasma nitrite and NOx levels in 2K1C rats compared with normotensive controls (both P < 0.05). Nitrite treatment restored the lower levels of nitrite and NOx. While no change was found in the blood levels of nitrosyl-hemoglobin (P > 0.05), nitrite treatment increased the plasma levels of cGMP in 2K1C rats (P < 0.05). Higher plasma TBARS levels and aortic ROS levels were found in hypertensive rats compared with controls (P < 0.05), and nitrite blunted these alterations. Lower SOD and catalase activities were found in 2K1C hypertensive rats compared with controls (both P < 0.05). Nitrite treatment restored SOD activity (P < 0.05), whereas catalase was not affected. These data suggest that even a single daily oral dose of sodium nitrite is able to lower SBP and exert antioxidant effects in renovascular hypertension.
Resumo:
Osmoregulatory mechanisms can be vulnerable to electrolyte and/or endocrine environmental changes during the perinatal period, differentially programming the developing offspring and affecting them even in adulthood. The aim of this study was to evaluate whether availability of hypertonic sodium solution during the perinatal period may induce a differential programming in adult offspring osmoregulatory mechanisms. With this aim, we studied water and sodium intake after Furosemide-sodium depletion in adult offspring exposed to hypertonic sodium solution from 1 week before mating until postnatal day 28 of the offspring, used as a perinatal manipulation model [PM-Na group]. In these animals, we also identified the cell population groups in brain nuclei activated by Furosemide-sodium depletion treatment, analyzing the spatial patterns of Fos and Fos-vasopressin immunoreactivity. In sodium depleted rats, sodium and water intake were significantly lower in the PM-Na group vs. animals without access to hypertonic sodium solution [PM-Ctrol group]. Interestingly, when comparing the volumes consumed of both solutions in each PM group, our data show the expected significant differences between both solutions ingested in the PM-Ctrol group, which makes an isotonic cocktail: however, in the PM-Na group there were no significant differences in the volumes of both solutions consumed after Furosemide-sodium depletion, and therefore the sodium concentration of total fluid ingested by this group was significantly higher than that in the PM-Ctrol group. With regard to brain Fos immunoreactivity, we observed that Furosemide-sodium depletion in the PM-Na group induced a higher number of activated cells in the subfornical organ, ventral subdivision of the paraventricular nucleus and vasopressinergic neurons of the supraoptic nucleus than in the PM-Ctrol animals. Moreover, along the brainstem, we found a decreased number of sodium depletion-activated cells within the nucleus of the solitary tract of the PM-Na group. Our data indicate that early sodium availability induces a long-term effect on fluid drinking and on the cell activity of brain nuclei involved in the control of hydromineral balance. These results also suggest that availability of a rich source of sodium during the perinatal period may provoke a larger anticipatory response in the offspring, activating the vasopressinergic system and reducing thirst after water and sodium depletion, as a result of central osmosensitive mechanism alterations. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
This paper describes the adsorption of sodium dodecyl sulfate (SDS) molecules in a low polar solvent on Ge substrate by using Fourier transform infrared-attenuated total reflection (FTIR-ATR) spectroscopy and atomic force microscopy (AFM). The maximum SDS amount adsorbed is (5.0 +/- 0.3) x 10(14) molecules cm(-2) in CHCl3, while with the use of CCl4 as subphase the ability of SDS adsorbed is 48% lower. AFM images show that depositions are highly disordered over the interface, and it was possible to establish that the size of the SDS deposition is around 30-40 nm over the Ge surface. A complete description of the infrared spectroscopic bands for the head and tail groups in the SDS molecule is also provided.
Resumo:
Abstract Background Measurements of hormonal concentrations by immunoassays using fluorescent tracer substance (Eu3+) are susceptible to the action of chemical agents that may cause alterations in its original structure. Our goal was to verify the effect of two types of anticoagulants in the hormone assays performed by fluorometric (FIA) or immunofluorometric (IFMA) methods. Methods Blood samples were obtained from 30 outpatients and were drawn in EDTA, sodium citrate, and serum separation Vacutainer®Blood Collection Tubes. Samples were analyzed in automatized equipment AutoDelfia™ (Perkin Elmer Brazil, Wallac, Finland) for the following hormones: Luteinizing hormone (LH), Follicle stimulating homone (FSH), prolactin (PRL), growth hormone (GH), Sex hormone binding globulin (SHBG), thyroid stimulating hormone (TSH), insulin, C peptide, total T3, total T4, free T4, estradiol, progesterone, testosterone, and cortisol. Statistical analysis was carried out by Kruskal-Wallis method and Dunn's test. Results No significant differences were seen between samples for LH, FSH, PRL and free T4. Results from GH, TSH, insulin, C peptide, SHBG, total T3, total T4, estradiol, testosterone, cortisol, and progesterone were significant different between serum and EDTA-treated samples groups. Differences were also identified between serum and sodium citrate-treated samples in the analysis for TSH, insulin, total T3, estradiol, testosterone and progesterone. Conclusions We conclude that the hormonal analysis carried through by FIA or IFMA are susceptible to the effects of anticoagulants in the biological material collected that vary depending on the type of assay.
Resumo:
The effects of fluoride, which is present in different oral hygiene products, deserve more investigation because little is known about their impact on the surface of titanium, which is largely used in Implantology. This study evaluated the surface of commercially pure titanium (cpTi) after exposure to different concentrations of sodium fluoride (NaF). The hypothesis tested in this study was that different concentrations of NaF applied at different time intervals can affect the titanium surface in different ways. The treatments resulted in the following groups: GA (control): immersion in distilled water; GB: immersion in 0.05% NaF for 3 min daily; GC: immersion in 0.2% NaF for 3 min daily; GD: immersion in 0.05% NaF for 3 min every 2 weeks; and GE: immersion in 0.2% NaF for 3 min every 2 weeks. The experiment lasted 60 days. Roughness was measured initially and every 15 days subsequently up to 60 days. After 60 days, corrosion analysis and anodic polarization were done. The samples were examined by scanning electron microscopy (SEM). The roughness data were analyzed by ANOVA and there was no significant difference among groups and among time intervals. The corrosion data (i corr) were analyzed by the Mann-Whitney test, and significant differences were found between GA and GC, GB and GC, GC and GD, GC and GE. SEM micrographs showed that the titanium surface exposed to NaF presented corrosion that varied with the different concentrations. This study suggests that the use of 0.05% NaF solution on cpTi is safe, whereas the 0.2% NaF solution should be carefully evaluated with regard to its daily use.
Resumo:
The aim of this study was to evaluate the effect of irrigation regimens on dentin microhardness at the furcation area of mandibular molars, using sodium hypochlorite and ethylenediaminetetraacetic acid (EDTA), individually and in alternation. The occlusal surface and the roots of 20 non-carious extracted human permanent mandibular molars were cut transversally and discarded. The tooth blocks were embedded in acrylic resin and randomly assigned to 4 groups (n=5) according to the irrigating regimens: 1% NaOCl solution, 17% EDTA solution, 1% NaOCl and 17% EDTA and distilled water (control). Knoop microhardness of dentin at the furcation area was evaluated. Data were analyzed using one-way ANOVA and Tukey's multiple comparison tests (α=0.05). The results of this study indicated that all irrigation solutions, except for distilled water (control), decreased dentin microhardness. EDTA did not show a significant difference with NaOCl/EDTA (p>0.05), but showed a significant difference with NaOCl (p<0.01). EDTA and NaOCl/EDTA showed a maximum decrease in microhardness. The 17% EDTA solution, either alone or in combination with 1% NaOCl reduced significantly dentin microhardness at the furcation area of mandibular molars.
Resumo:
Lyotropic liquid crystals exhibiting nematic phases were obtained from the mixtures potassium laurate/alkali sulfate salts (M2SO4)/1-undecanol (UndeOH)/water and sodium dodecyl sulfate (SDS)/M2SO4/1-dodecanol (DDeOH)/water, where M2SO4 represents the alkali sulfate salts being Li2SO4, Na2SO4, K2SO4, Rb2SO4 or Cs2SO4. The birefringences measurements were performed via laser conoscopy. Our results indicated that cosmotropic and chaotropic behaviors of both ions and head groups are very important to obtain lyotropic biaxial nematic phase. To obtain the biaxial nematic phase, surfactant head group and ion present in lyotropic mixture have relatively opposite behavior, e.g. one more cosmotropic (more chaotropic) other less cosmotropic (less chaotropic) or vice versa.
Resumo:
An einer Vielzahl biogener Polyelektrolyte, wie z.B. den Nukleinsäuren DNA und RNA sowie Proteinen, ist die Ausbildung von Strukturhierarchien durch Selbstorganisation von Strukturelementen zu beobachten. Dabei wird das Strukturbildungsverhalten durch eine Kopplung von Wechselwirkungen auf verschiedenen Längenskalen, den kurzreichweitigen ausgeschlossenen Volumen und den langreichweitigen elektrostatischen Wechselwirkungen (Coulomb-Wechselwirkungen), die wiederum durch eine Vielzahl mikroskopische Parameter (z.B. Konformation) beeinflusst werden, bestimmt. Durch diese Komplexität ist es nicht möglich, den für die Strukturbildung hochgeladener Systeme bedeutsamen Beitrag der elektrostatischen Wechselwirkungen isoliert zu betrachten. Aus diesem Grund werden zur Aufklärung von Wechselwirkungs- und Strukturbildungsmechanismen vereinfachte Modell-Systeme herangezogen. Eine Möglichkeit besteht in der Verwendung synthetischer, kettensteifer Polyelektrolyte. Im Rahmen dieser Arbeit wurde das Aggregationsverhalten wässriger Lösungen dodecylsubstituierter Poly(para-phenylen)sulfonate (PPPS) sowie die Beeinflussung der Strukturbildung durch verschiedene Parameter charakterisiert. Als Einflussparameter wurden einerseits die Gegenion-Spezies und andererseits die Temperatur- und Konzentrations-Abhängigkeit untersucht. Hierzu wurden wässrige Lösungen der freien Säuren der PPPS mit Molekulargewichten zwischen MW = 18 kg/mol bis 58 kg/mol mittels Licht-, Röntgen- und Neutronenstreuung sowie durch Licht-, Polarisations-, Transmissionselektronen- und Rasterkraftmikroskopie in einem Konzentrationsbereich von 0,0008 < c < 1,1 g/L untersucht.