905 resultados para SIZE-CONTROLLED SYNTHESIS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new solvothermal route has been developed for synthesizing the size-controlled CdSe nanocrystals with relatively narrow size distribution, and the photoluminescence (PL) quantum yields (QYs) of the nanocrystals can reach 5-10%. Then the obtained CdSe nanocrystals served as cores to prepare the core/shell CdSe/CdS nanocrystals via a two-phase thermal approach, which exhibited much higher PL QYs (up to 18-40%) than the CdSe core nanocrystals. The nanocrystal samples were characterized by ultraviolet-visible (UV-vis) absorption spectra, PL spectra, wide-angle Xray diffraction (WAXD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many problems in early vision are ill posed. Edge detection is a typical example. This paper applies regularization techniques to the problem of edge detection. We derive an optimal filter for edge detection with a size controlled by the regularization parameter $\\ lambda $ and compare it to the Gaussian filter. A formula relating the signal-to-noise ratio to the parameter $\\lambda $ is derived from regularization analysis for the case of small values of $\\lambda$. We also discuss the method of Generalized Cross Validation for obtaining the optimal filter scale. Finally, we use our framework to explain two perceptual phenomena: coarsely quantized images becoming recognizable by either blurring or adding noise.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The structure, thermal stability, and catalytic behavior of a novel highly dispersed silica-supported Pd/Sn catalyst prepared by an organometallic route have been examined by X-ray photoelectron, X-ray diffraction, and X-ray absorption, fine structure spectroscopies, the latter two measurements being carried outwith an in situ reaction cell. Additional reactor measurements were performed on a more Sn-rich catalyst and on a pure Pd catalyst. Varying the temperature of reduction induced large variations in catalytic performance toward ethyne-coupling reactions. These changes are understandable in terms of the destruction of SnO2-like structures surrounding the Pd core, yielding a skin of metallic Sn which subsequently undergoes intermixing with Pd. The overall thermal and catalytic behavior of these highly dispersed materials accords well with the analogous single-crystal model system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Herein, we present a facile method for the formation of monodispersed metal nanoparticles (NPs) at room temperature from M(III)Cl3 (with M = Au, Ru, Mn, Fe or V) in different media based on N,N-dimethylformamide (DMF) or water solutions containing a protic ionic liquid (PIL), namely the octylammonium formate (denoted OAF) or the bis(2-ethyl-hexyl)ammonium formate (denoted BEHAF). These two PILs present different structures and redox-active structuring properties that influence their interactions with selected molecular compounds (DMF or water), as well as the shape and the size of formed metal NPs in these solutions. Herein, the physical properties, such as the thermal, transport and micellar properties, of investigated PIL solutions were firstly investigated in order to understand the relation between PILs structure and their properties in solutions with DMF or water. The formation of metal NPs in these solutions was then characterized by using UV–vis spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and dynamic light scattering (DLS) measurements. From our investigations, it appears that the PILs structure and their aggregation pathways in selected solvents affect strongly the formation, growths, the shape and the size of metal NPs. In fact by using this approach, the shape-/size-controlled metal NPs can be generated under mild condition. This approach suggests also a wealth of potential for these designer nanomaterials within the biomedical, materials, and catalysis communities by using designer and safer media based on PILs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel strategy for the controlled synthesis of 2D MoS<inf>2</inf>/C hybrid nanosheets consisting of the alternative layer-by-layer interoverlapped single-layer MoS<inf>2</inf> and mesoporous carbon (m-C) is demonstrated. Such special hybrid nanosheets with a maximized MoS<inf>2</inf>/m-C interface contact show very good performance for lithium-ion batteries in terms of high reversible capacity, excellent rate capability, and outstanding cycling stability.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Follicle diameters and concentrations of follicular fluid factors were studied in the two largest follicles (F1 and F2) using F1 diameters in increments of 0.2 mm (equivalent to 4 h intervals) and extending from 7.4 to 8.4 mm (12 heifers in each of 6 groups). Changes were compared between follicles using the F2 associated with each F1-diameter group. Diameter deviation began in the 8.2-mm group as indicated by a greater (P < 0.05) diameter difference between F1 and F2 in the 8.4-mm group than in the 8.2-mm group. In the 8.0-mm group, estradiol concentrations began to increase (P < 0.05) differentially in F1 versus F2, and free insulin-like growth factor-1 (IGF-1) began to decrease differentially in F2 (P < 0.06). Combined for F1 and the associated F2, activin-A concentrations increased (P < 0.05) between the 7.6- and 8.2-mm groups and then decreased (P < 0.05). Results supported the hypothesis that estradiol and free IGF-1 concentrations simultaneously become higher in F1 than in the associated F2 by the beginning of diameter deviation. Results did not support the hypothesis that a transient elevation in activin-A is present in F1 but not in the associated F2 at the beginning of the estradiol and IGF-1 changes; instead, a mean transient elevation in activin-A occurred at this time only when data for the two follicles were combined. Comparisons between F1 and F2 also were made by independently grouping F2 and using diameter groups at 0.2-mm increments for F2 as well as for F1. In the diameter groups common to F1 and F2 (7.4, 7.6, 7.8, and 8.0 mm) there was a group effect (P < 0.003) for estradiol involving an increase (P < 0.05) beginning at the 7.6-mm group averaged over F1 and F2. For free IGF-1 concentrations, a fluctuation (a significant increase followed by a significant decrease) occurred independently in F1 between the 7.4-to 7.8-mm groups and independently in F2 between the 7.0- to 7.4-mm groups.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This Letter reports on the synthesis of Ag-Au nanoparticles (NPs) with controlled structures and compositions via a galvanic replacement reaction between Ag NPs and AuCl4(aq)- followed by the investigation of their optical and catalytic properties. Our results showed the formation of porous walls, hollow interiors and increased Au content in the Ag-Au NPs as the volume of AuCl4(aq)- employed in the reaction was increased. These variations led to a red shift and broadening of the SPR peaks and an increase of up to 10.9-folds in the catalytic activity towards the reduction of 4-nitrophenol relative to Ag NPs. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new class of inorganic-organic hybrid polymers could successfully been prepared by the combination of different polymerization techniques. The access to a broad range of organic polymers incorporated into the hybrid polymer was realized using two independent approaches.rnIn the first approach a functional poly(silsesquioxane) (PSSQ) network was pre-formed, which was capable to initiate a controlled radical polymerization to graft organic vinyl-type monomers from the PSSQ precursor. As controlled radical polymerization techniques atom transfer radical polymerization (ATRP), as well as reversible addition fragmentation chain transfer (RAFT) polymerization could be used after defined tuning of the PSSQ precursor either toward a PSSQ macro-initiator or to a PSSQ macro-chain-transfer-agent. The polymerization pathway, consisting of polycondensation of trialkoxy-silanes followed by grafting-from polymerization of different monomers, allowed synthesis of various functional hybrid polymers. A controlled synthesis of the PSSQ precursors could successfully be performed using a microreactor setup; the molecular weight could be adjusted easily while the polydispersity index could be decreased well below 2.rnThe second approach aimed to incorporate differently derived organic polymers. As examples, polycarbonate and poly(ethylene glycol) were end-group-modified using trialkoxysilanes. After end-group-functionalization these organic polymers could be incorporated into a PSSQ network.rnThese different hybrid polymers showed extraordinary coating abilities. All polymers could be processed from solution by spin-coating or dip-coating. The high amount of reactive silanol moieties in the PSSQ part could be cross-linked after application by annealing at 130° for 1h. Not only cross-linking of the whole film was achieved, which resulted in mechanical interlocking with the substrate, also chemical bonds to metal or metal oxide surfaces were formed. All coating materials showed high stability and adhesion onto various underlying materials, reaching from metals (like steel or gold) and metal oxides (like glass) to plastics (like polycarbonate or polytetrafluoroethylene).rnAs the material and the synthetic pathway were very tolerant toward different functionalities, various functional monomers could be incorporated in the final coating material. The incorporation of N-isopropylacrylamide yielded in temperature-responsive surface coatings, whereas the incorporation of redox-active monomers allowed the preparation of semi-conductive coatings, capable to produce smooth hole-injection layers on transparent conductive electrodes used in optoelectronic devices.rnThe range of possible applications could be increased tremendously by incorporation of reactive monomers, capable to undergo fast and quantitative conversions by polymer-analogous reactions. For example, grafting active esters from a PSSQ precursor yielded a reactive surface coating after application onto numerous substrates. Just by dipping the coated substrate into a solution of a functionalized amine, the desired function could be immobilized at the interface as well as throughout the whole film. The obtained reactive surface coatings could be used as basis for different functional coatings for various applications. The conversion with specifically tuned amines yielded in surfaces with adjustable wetting behaviors, switchable wetting behaviors or as recognition element for surface-oriented bio-analytical devices. The combination of hybrid materials with orthogonal reactivities allowed for the first time the preparation of multi-reactive surfaces which could be functionalized sequentially with defined fractions of different groups at the interface. rnThe introduced concept to synthesis functional hybrid polymers unifies the main requirements on an ideal coating material. Strong adhesion on a wide range of underlying materials was achieved by secondary condensation of the PSSQ part, whereas the organic part allowed incorporation of various functionalities. Thus, a flexible platform to create functional and reactive surface coatings was achieved, which could be applied to different substrates. rn

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rock-pocket and honeycomb defects impair overall stiffness, accelerate aging, reduce service life, and cause structural problems in hardened concrete members. Traditional methods for detecting such deficient volumes involve visual observations or localized nondestructive methods, which are labor-intensive, time-consuming, highly sensitive to test conditions, and require knowledge of and accessibility to defect locations. The authors propose a vibration response-based nondestructive technique that combines experimental and numerical methodologies for use in identifying the location and severity of internal defects of concrete members. The experimental component entails collecting mode shape curvatures from laboratory beam specimens with size-controlled rock pocket and honeycomb defects, and the numerical component entails simulating beam vibration response through a finite element (FE) model parameterized with three defect-identifying variables indicating location (x, coordinate along the beam length) and severity of damage (alpha, stiffness reduction and beta, mass reduction). Defects are detected by comparing the FE model predictions to experimental measurements and inferring the low number of defect-identifying variables. This method is particularly well-suited for rapid and cost-effective quality assurance for precast concrete members and for inspecting concrete members with simple geometric forms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Size-controlled, catalytically active PVP-stabilised Pd nanoparticles have been studied by operando liquid phase XAS during the Suzuki cross-coupling of iodonanisole and phenylboronic acid in MeOH-toluene using KOMe base. XAS reveals nanoparticles are stable to metal leaching throughout the reaction, with surface density Pd defect sites directly implicated in the catalytic cycle. The efficacy of popular selective chemical and structural poisons for distinguishing heterogeneous and homogeneous contributions in Pd catalysed cross-couplings is also explored. © 2010 The Royal Society of Chemistry.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A detailed study on the preparation of bimetallic PtSn/C catalysts using surface-controlled synthesis methods, and on their catalytic performance in the glycerol steam reforming reaction has been carried out. In order to obtain these well-defined bimetallic phases, techniques derived from Surface Organometallic Chemistry on Metals (SOMC/M) were used. The preparation process involved the reaction between an organometallic compound ((C4H9)4Sn) and a supported transition metal (Pt) in a H2 atmosphere. Catalysts with Sn/Pt atomic ratios of 0.2, 0.3, 0.5, and 0.7 were obtained, and characterized using several techniques: ICP, H2 chemisorption, TEM and XPS. These systems were tested in the glycerol steam reforming varying the reaction conditions (glycerol concentration and reaction temperature). The best performance was observed for the catalysts with the lowest tin contents (PtSn0.2/C and PtSn0.3/C). It was observed that the presence of tin increased the catalysts’ stability when working under more severe reaction conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A rationally designed two-step synthesis of silica vesicles is developed with the formation of vesicular structure in the first step and fine control over the entrance size by tuning the temperature in the second step. The silica vesicles have a uniform size of ≈50 nm with excellent cellular uptake performance. When the entrance size is equal to the wall thickness, silica vesicles after hydrophobic modification show the highest loading amount (563 mg/g) towards Ribonuclease A with a sustained release behavior. Consequently, the silica vesicles are excellent nano-carriers for cellular delivery applications of therapeutical biomolecules.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Fine-particle NASICON materials, Na1+xZr2P3-xSixO12 (where x = 0.0, 0.5, 1.0, 1.5, 2.0 and 2.5), have been prepared by controlled combustion of an aqueous solution containing stoicthiometric amounts of sodium nitrate, zirconyl nitrate, ammonium perchlorate, diammonium hydrogen phosphate, fumed silica and carbonohydrazide. Formation of NASICON has been confirmed by powder XRD, Si-29 NMR and IR spectroscopy. These NASICON powders are fine (average agglomerate size 5-12 mum) with a surface area varying from 8 to 30 m2 g-1. NASICON powders pelletized and sintered at 1100-1200-degrees-C for 5 h achieved 90-95% theoretical density and show fine-grain microstructure. The coefficient of thermal expansion of sintered NASICON compact was measured up to 500-degrees-C and changes f rom -3.4 x 10(-6) to 4.1 x 10(-6) K-1. The conductivity of Sintered Na3Zr2PSi2O12 compact at 300-degrees-C is 0.236 OMEGA-1 cm-1.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

CdSe nanocrystals (NCs) are prepared in noncoordination solvents (1-octadecene (ODE) and paraffin liquid) with Ion g-chain primary alkylamine as the sole ligand, ODE-Se, and cadmium fatty acid salt as precursors. The obtained NCs meet the four fundamental parameters for high-quality NCs: high crystallinity, narrow size distribution, moderate photoluminescence quantum yield, and broad range size tunableness. Further, by simply regulating the relative molar ratio of alkylamine to cadmium precursor, the regular sized "nuclei" and final obtained NCs can be produced predictably within a certain size range.