964 resultados para SHEAR PROPERTIES


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The melt rheological properties of binary uncompatibilized polypropylene -polyamide6 (PP-PA6) blends and ternary blends compatibilized with maleic anhydride-grafted PP (PP-PP-g-MAH-PA6) were studied using a capillary rheometer. The experimental shear viscosities of blends were compared with those calculated from Utracki's relation. The deviation value delta between these two series of data was obtained. In binary PP-PA6 blends, when the compatibility between PP and PA6 was poor, the deformation recovery of dispersed PA6 particles played the dominant role during the capillary flow, the experimental values were smaller than those calculated, and delta was negative. The higher the dispersed phase content, the more deformed the droplets were and the lower the apparent shear viscosity. Also, the absolute value of delta increased with the dispersed phase composition. In ternary PP-PP-g-MAH-PA6 systems, when the compatibility between PP and PA6 was enhanced by PP-g-MAH, the elongation and break-up of the dispersed particles played the dominant role, and the experimental values were higher than calculated. It was observed that the higher the dispersion of the PA6 phase, the higher the delta values of the ternary blends and the larger the positive deviation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rheological properties of the blends of poly(aryl ether ether ketone) (PEEK) with liquid crystalline poly(aryl ether ketone) containing substituted 3-trifluoro-methylbenzene side group (F-PAEK), prepared by solution precipitation, have been investigated by rheometer. Dynamic rheological behaviors of the blends under the oscillatory shear mode are strongly dependent on blend composition. For PEEK-rich blends, the systems show flow curves similar to those of the pure PEEK, i.e., dynamic storage modulus G' is larger than dynamic loss modulus G", showing the feature of elastic fluid. For F-PAEK-rich systems, the rheological behavior of the blends has a resemblance to pure F-PAEK, i.e., G" is greater than G', showing the characteristic of viscous fluid. When the PEEK content is in the range of 50-70%, the blends exhibit an unusual rheological behavior, which is the result of phase inversion between the two components. Moreover, as a whole, the complex viscosity values of the blends are between those of two pure polymers and decrease with increasing F-PAEK content. However, at 50% weight fraction of PEEK, the viscosity-composition curves exhibit a local maximum, which may be mainly attributed to the phase separation of two components at such a composition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mesomorphic properties of a side chain liquid crystalline polyacetylene, poly(11-{[(4'-heptyloxy-4-biphenylyl)carbonyl]oxy}-1-undecyne) (PA9EO7), are investigated using polarized optical microscope, X-ray diffraction, and transmission electron microscope. Polymer PA9EO7 forms enantiotropic smectic A and smectic B phases. It also exhibits an additional high order smectic phase, a sandwich structure consisting of different molecular packing of biphenyl mesogenic moieties from that of alkyl spacers and terminals, when it is prepared from its toluene solution. Shearing the polymer film at its smectic A phase generates banded texture with the alignment of the backbones parallel to the direction of shear force. While at its high order smectic phase, the mesogen pendants of the polymer are arranged parallel to the direction of shear. The different mesomorphic behaviors arise from different molecular alignments influenced by the fluidity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rheological properties of the novel engineering thermoplastic phenophthalein poly(ether ether ketone) (PEK-C) have been investigated using both a rotational and a capillary rheometer. The dependence of the viscosity on the shear rate and temperature was obtained. The activation energy was evaluated both from the Arrhenius and the Williams-Landel-Ferry (WLF) equation. An estimate for the proper E(eta) (dependent only on the chemical structure of the polymer) has been found from the WLF equation at temperatures about T-g + 200 degrees C. Measurements of the die swell have been performed. The first normal stress differences were evaluated from the die swell results and compared with the values obtained from the rotational rheometer at low shear rates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular theories of shear thickening and shear thinning in associative polymer networks are typically united in that they involve a single kinetic parameter that describes the network -- a relaxation time that is related to the lifetime of the associative bonds. Here we report the steady-shear behavior of two structurally identical metallo-supramolecular polymer networks, for which single-relaxation parameter models break down in dramatic fashion. The networks are formed by the addition of reversible cross-linkers to semidilute entangled solutions of PVP in DMSO, and they differ only in the lifetime of the reversible cross-links. Shear thickening is observed for cross-linkers that have a slower dissociation rate (17 s(-1)), while shear thinning is observed for samples that have a faster dissociation rate (ca. 1400 s(-1)). The difference in the steady shear behavior of the unentangled vs. entangled regime reveals an unexpected, additional competing relaxation, ascribed to topological disentanglement in the semidilute entangled regime that contributes to the rheological properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report here the nonlinear rheological properties of metallo-supramolecular networks formed by the reversible cross-linking of semi-dilute unentangled solutions of poly(4-vinylpyridine) (PVP) in dimethyl sulfoxide (DMSO). The reversible cross-linkers are bis-Pd(II) or bis-Pt(II) complexes that coordinate to the pyridine functional groups on the PVP. Under steady shear, shear thickening is observed above a critical shear rate, and that critical shear rate is experimentally correlated with the lifetime of the metal-ligand bond. The onset and magnitude of the shear thickening depend on the amount of cross-linkers added. In contrast to the behavior observed in most transient networks, the time scale of network relaxation is found to increase during shear thickening. The primary mechanism of shear thickening is ascribed to the shear-induced transformation of intrachain cross-linking to interchain cross-linking, rather than nonlinear high tension along polymer chains that are stretched beyond the Gaussian range.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To study the impact of powder flow properties on dosator filling systems, with particular focus on improvements in dose weight accuracy and repeatability. Method: This study evaluates a range of critical powder flow properties such as: flow function, cohesion, wall friction, adhesion to wall surfaces, density/compressibility data, stress ratio “K” and gas permeability. The characterisations of the powders considered in this study were undertaken using an annular shear cell using a sample size of 0.5 litres. This tester also incorporated the facility to measure bed expansion during shear in addition to contraction under consolidation forces. A modified Jenike type linear wall friction tester was used to develop the failure loci for the powder sample in conjunction with multiple wall samples (representing a variety of material types and surface finishes). Measurements of the ratio of applied normal stress versus lateral stress were determined using a piece of test equipment specifically designed for the purpose. Results: The correct characterisation of powders and the incorporation of this data into the design of process equipment are recognised as critical for reliable and accurate operation. An example of one aspect of this work is the stress ratio “K”. This characteristic is not well understood or correctly interpreted in many cases – despite its importance. Fig 1 [Omitted] (illustrates a sample of test data. The slope of the line gives the stress ratio in a uniaxial compaction system – indicating the behaviour of the material under compaction during dosing processes. Conclusions: A correct assessment of the bulk powder properties for a given formulation can allow prediction of: cavity filling behaviour (and hence dosage), efficiency of release from dosator, and strength and stability of extruded dose en route to capsule filling Influences over the effectiveness of dosator systems have been shown to be impacted upon by: bed pre-compaction history, gas permeability in the bed (with respect to local density effects), and friction effects for materials of construction for dosators

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose – The purpose of this paper is to investigate the rheological behaviour of three different lead-free solder pastes used for surface mount applications in the electronic industry.Design/methodology/approach – This study concerns the rheological measurements of solder paste samples and is made up of three parts. The first part deals with the measurement of rhelogical properties with three different measuring geometries, the second part looks into the effect of frequencies on oscillatory stress sweep measurements and the final part reports on the characterisation and comparison of three different types of Pb-free solder pastes. Findings – Among the three geometries, the serrated parallel plate was found effective in minimising the wall-slip effect. From the oscillatory stresssweep data with different frequencies; it was observed that the linear visco-elastic region is independent of frequency for all the solder paste samples. To understand the shear thinning behaviour of solder paste, the well known Cross and Carreau models were fitted to the viscosity data. Moreover,creep-recovery and dynamic frequency-sweep tests were also carried out without destroying the sample’s structure and have yielded useful information on the pastes behaviour.Research limitations/implications – More extensive research is needed to fully characterise the wall-slip behaviour during the rheological measurements of solder pastes. Practical implications – The rheological test results presented in this paper will be of important value for research and development, quality control and facilitation of the manufacturing of solder pastes and flux mediums. Originality/value – This paper shows how wall-slip effects can be effectively avoided during rheological measurements of solder pastes. The paper also outlines how different rheological test methods can be used to characterise solder paste behaviours

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to mathematically characterize the effects of defined experimental parameters (probe speed and the ratio of the probe diameter to the diameter of sample container) on the textural/mechanical properties of model gel systems. In addition, this study examined the applicability of dimensional analysis for the rheological interpretation of textural data in terms of shear stress and rate of shear. Aqueous gels (pH 7) were prepared containing 15% w/w poly(methylvinylether-co-maleic anhydride) and poly(vinylpyrrolidone) (PVP) (0, 3, 6, or 9% w/w). Texture profile analysis (TPA) was performed using a Stable Micro Systems texture analyzer (model TA-XT 2; Surrey, UK) in which an analytical probe was twice compressed into each formulation to a defined depth (15 mm) and at defined rates (1, 3, 5, 8, and 10 mm s-1), allowing a delay period (15 s) between the end of the first and beginning of the second compressions. Flow rheograms were performed using a Carri-Med CSL2-100 rheometer (TA Instruments, Surrey, UK) with parallel plate geometry under controlled shearing stresses at 20.0°?±?0.1°C. All formulations exhibited pseudoplastic flow with no thixotropy. Increasing concentrations of PVP significantly increased formulation hardness, compressibility, adhesiveness, and consistency. Increased hardness, compressibility, and consistency were ascribed to enhanced polymeric entanglements, thereby increasing the resistance to deformation. Increasing probe speed increased formulation hardness in a linear manner, because of the effects of probe speed on probe displacement and surface area. The relationship between formulation hardness and probe displacement was linear and was dependent on probe speed. Furthermore, the proportionality constant (gel strength) increased as a function of PVP concentration. The relationship between formulation hardness and diameter ratio was biphasic and was statistically defined by two linear relationships relating to diameter ratios from 0 to 0.4 and from 0.4 to 0.563. The dramatically increased hardness, associated with diameter ratios in excess of 0.4, was accredited to boundary effects, that is, the effect of the container wall on product flow. Using dimensional analysis, the hardness and probe displacement in TPA were mathematically transformed into corresponding rheological parameters, namely shearing stress and rate of shear, thereby allowing the application of the power law (??=?k?n) to textural data. Importantly, the consistencies (k) of the formulations, calculated using transformed textural data, were statistically similar to those obtained using flow rheometry. In conclusion, this study has, firstly, characterized the relationships between textural data and two key instrumental parameters in TPA and, secondly, described a method by which rheological information may be derived using this technique. This will enable a greater application of TPA for the rheological characterization of pharmaceutical gels and, in addition, will enable efficient interpretation of textural data under different experimental parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Validation of a framework for unsaturated soil behaviour has frequently resulted in disagreement with basic propositions. A primary reason for this disparity is considered to be attributable to the anisotropic properties of the soil specimens tested as a result of preparation using one-dimensional compaction. As part of the work presented, comparison is made between tests on samples of unsaturated kaolin prepared at identical specific volumes and specific water volumes using isotropic compression and one-dimensional compression. The suctions in the samples were reduced to predefined values by wetting under low isotropic loading in a triaxial cell. The samples were then taken through various stress paths to failure, defined as the critical state strength, while the suctions were held constant. Stress path tests were also performed on samples without reducing the suction to predefined values. In the latter, constant water mass tests, the suctions were allowed to vary and were measured using a psychrometer. The results of the tests at critical state are compared with the propositions of Wheeler and Sivakumar. The shear strengths of samples with isotropic previous history are shown to be significantly greater than those of samples with one-dimensional stress history when plotted against the mean net stress. The normal compression lines, critical state lines and yield characteristics are also shown to be significantly influenced by the previous stress history and are shown to be different for isotropically and one-dimensionally prepared samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Major ampullate silk fibers of orb web-weaving spiders have impressive mechanical properties due to the fact that the underlying proteins partially fold into helical/amorphous structures, yielding relatively elastic matrices that are toughened by anisotropic nanoparticulate inclusions (formed from stacks of beta-sheets of the same proteins). In vivo the transition from soluble protein to solid fibers involves a combination of chemical and mechanical stimuli (such as ion exchange, extraction of water and shear forces). Here we elucidate the effects of such stimuli on the in vitro aggregation of engineered and recombinantly produced major ampullate silk-like proteins (focusing on structure-function relationships with respect to their primary structures), and discuss their relevance to the storage and assembly of spider silk proteins in vivo. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Given the growing interest in thermal processing methods, this study describes the use of an advanced rheological technique, capillary rheometry, to accurately determine the thermorheological properties of two pharmaceutical polymers, Eudragit E100 (E100) and hydroxypropylcellulose JF (HPC) and their blends, both in the presence and absence of a model therapeutic agent (quinine, as the base and hydrochloride salt). Furthermore, the glass transition temperatures (Tg) of the cooled extrudates produced using capillary rheometry were characterised using Dynamic Mechanical Thermal Analysis (DMTA) thereby enabling correlations to be drawn between the information derived from capillary rheometry and the glass transition properties of the extrudates. The shear viscosities of E100 and HPC (and their blends) decreased as functions of increasing temperature and shear rates, with the shear viscosity of E100 being significantly greater than that of HPC at all temperatures and shear rates. All platforms were readily processed at shear rates relevant to extrusion (approximately 200–300 s−1) and injection moulding (approximately 900 s−1). Quinine base was observed to lower the shear viscosities of E100 and E100/HPC blends during processing and the Tg of extrudates, indicative of plasticisation at processing temperatures and when cooled (i.e. in the solid state). Quinine hydrochloride (20% w/w) increased the shear viscosities of E100 and HPC and their blends during processing and did not affect the Tg of the parent polymer. However, the shear viscosities of these systems were not prohibitive to processing at shear rates relevant to extrusion and injection moulding. As the ratio of E100:HPC increased within the polymer blends the effects of quinine base on the lowering of both shear viscosity and Tg of the polymer blends increased, reflecting the greater solubility of quinine within E100. In conclusion, this study has highlighted the importance of capillary rheometry in identifying processing conditions, polymer miscibility and plasticisation phenomena.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The characteristics of hydraulic jumps were investigated for three shapes of artificial apparent corrugated beds in a horizontal rectangular flume. Rectangular, triangular, and circular-shaped tire waste corrugated beds were used. Froude number ranged from 2.75 to 4.25. The experimental observations included water surface profiles, bed shear stress, and the hydraulic jump length. Results showed that the shape of the corrugation had relatively insignificant effects on hydraulic jump properties for small Froude numbers. The rectangular, triangular, and circular-shaped corrugated beds reduced the hydraulic jump length by up to 7, 10, and 11%, respectively. The corrugated bed also reduced the tailwater depth by up to 11.5% compared with the smooth bed. The apparent conditions of corrugated bed reduced the hydraulic jump relative length and height by about 0.4 and 0.5, respectively. The circular-shaped tire waste was found to be more effective in reducing the length and depth of the hydraulic jump.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main aims of the present study are simultaneously to relate the brazing parameters with: (i) the correspondent interfacial microstructure, (ii) the resultant mechanical properties and (iii) the electrochemical degradation behaviour of AISI 316 stainless steel/alumina brazed joints. Filler metals on such as Ag–26.5Cu–3Ti and Ag–34.5Cu–1.5Ti were used to produce the joints. Three different brazing temperatures (850, 900 and 950 °C), keeping a constant holding time of 20 min, were tested. The objective was to understand the influence of the brazing temperature on the final microstructure and properties of the joints. The mechanical properties of the metal/ceramic (M/C) joints were assessed from bond strength tests carried out using a shear solicitation loading scheme. The fracture surfaces were studied both morphologically and structurally using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction analysis (XRD). The degradation behaviour of the M/C joints was assessed by means of electrochemical techniques. It was found that using a Ag–26.5Cu–3Ti brazing alloy and a brazing temperature of 850 °C, produces the best results in terms of bond strength, 234 ± 18 MPa. The mechanical properties obtained could be explained on the basis of the different compounds identified on the fracture surfaces by XRD. On the other hand, the use of the Ag–34.5Cu–1.5Ti brazing alloy and a brazing temperature of 850 °C produces the best results in terms of corrosion rates (lower corrosion current density), 0.76 ± 0.21 μA cm−2. Nevertheless, the joints produced at 850 °C using a Ag–26.5Cu–3Ti brazing alloy present the best compromise between mechanical properties and degradation behaviour, 234 ± 18 MPa and 1.26 ± 0.58 μA cm−2, respectively. The role of Ti diffusion is fundamental in terms of the final value achieved for the M/C bond strength. On the contrary, the Ag and Cu distribution along the brazed interface seem to play the most relevant role in the metal/ceramic joints electrochemical performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Biotecnologia