973 resultados para SCALAR MESONS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The characteristics of the scalar dissipation rate transport in the corrugated flamelets and the thin reaction zones regimes are studied based on two three-dimensional Direct Numerical Simulation (DNS) databases for freely propagating statistically planar turbulent premixed flames. The turbulent flame parameters are so chosen that the database which represents the corrugated flamelets regime has a global Damköhler number Da>1 whereas the database representing the thin reaction zones regime has Da <1. It is demonstrated that the terms originating from the correlation between fluctuating velocity and scalar gradient T1 shows strong Da dependence. The terms originating from dilatation T2, the scalar inner product of gradients of velocity and scalar fields T3 and the correlation between reaction rate and scalar gradients T4 and the dissipation term D2 remain important for both the flames. However, T3 dissipates scalar dissipation rate in the Da > 1 flame while it produces scalar dissipation rate in the Da < 1 flame. This difference is because of the change in the alignment between scalar and velocity gradients

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study various scalar dissipation rates and their modelling in the context of partially premixed flame are investigated. A DNS dataset of the near field of a turbulent hydrogen lifted jet flame is processed to analyse the mixture fraction and progress variable dissipation rates and their cross dissipation rate at several axial positions. It is found that the classical model for the passive scalar dissipation rate ε{lunate}̃ZZ gives good agreement with the DNS, while models developed based on premixed flames for the reactive scalar dissipation rate ε{lunate}̃cc only qualitatively capture the correct trend. The cross dissipation rate ε{lunate}̃cZ is mostly negative and can be reasonably approximated at downstream positions once ε{lunate}̃ZZ and ε{lunate}̃cc are known, although the sign cannot be determined. This approach gives better results than one employing a constant ratio of turbulent timescale and the scalar covariance c'Z'̃. The statistics of scalar gradients are further examined and lognormal distributions are shown to be very good approximations for the passive scalar and acceptable for the reactive scalar. The correlation between the two gradients increases downstream as the partially premixed flame in the near field evolves ultimately to a diffusion flame in the far field. A bivariate lognormal distribution is tested and found to be a reasonable approximation for the joint PDF of the two scalar gradients. © 2011 The Combustion Institute.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Turbulent combustion of stoichiometric hydrogen-air mixture is simulated using direct numerical simulation methodology, employing complex chemical kinetics. Two flame configurations, freely propagating and V-flames stabilized behind a hot rod, are simulated. The results are analyzed to study the influence of flame configuration on the turbulence-scalar interaction, which is critical for the scalar gradient generation processes. The result suggests that this interaction process is not influenced by the flame configuration and the flame normal is found to align with the most extensive strain in the region of intense heat release. The combustion in the rod stabilized flame is found to be flamelet like in an average sense and the growth of flame-brush thickness with the downstream distance is represented well by Taylor theory of turbulent diffusion, when the flame-brushes are non-interacting. The thickness is observed to saturate when the flame-brushes interact, which is found to occur in the simulated rod stabilized flame with Taylor micro-scale Reynolds number of 97. © 2011 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal imaging technique relies on the usage of infrared signal to detect the temperature field. Using temperature as a flow tracer, thermography is used to investigate the scalar transport in the shallow-water wake generated by an emergent circular cylinder. Thermal imaging is demonstrated to be a good quantitative flow visualization technique for studying turbulent mixing phenomena in shallow waters. A key advantage of the thermal imaging method over other scalar measurement techniques, such as the Laser Induced Fluorescence (LIF) and Planar Concentration Analysis (PCA) methods, is that it involves a very simple experimental setup. The dispersion characteristics captured with this technique are found to be similar to past studies with traditional measurement techniques. © 2012 Publishing House for Journal of Hydrodynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of turbulent Reynolds number, Ret, on the transport of scalar dissipation rate of reaction progress variable in the context of Reynolds averaged Navier-Stokes simulations have been analyzed using three-dimensional simplified chemistry-based direct numerical simulation (DNS) data of freely propagating turbulent premixed flames with different values of Ret. Scaling arguments have been used to explain the effects of Ret on the turbulent transport, scalar-turbulence interaction, and the combined reaction and molecular dissipation terms. Suitable modifications to the models for these terms have been proposed to account for Ret effects, and the model parameters include explicit Ret dependence. These expressions approach expected asymptotic limits for large values of Ret. However, turbulent Reynolds number Ret does not seem to have any major effects on the modeling of the term arising from density variation. Copyright © Taylor and Francis Group, LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The standard design process for the Siemens Industrial Turbomachinery, Lincoln, Dry Low Emissions combustion systems has adopted the Eddy Dissipation Model with Finite Rate Chemistry for reacting computational fluid dynamics simulations. The major drawbacks of this model have been the over-prediction of temperature and lack of species data limiting the applicability of the model. A novel combustion model referred to as the Scalar Dissipation Rate Model has been developed recently based on a flamelet type assumption. Previous attempts to adopt the flamelet philosophy with alternative closure models have failed, with the prediction of unphysical phenomenon. The Scalar Dissipation Rate Model (SDRM) was developed from a physical understanding of scalar dissipation rate, signifying the rate of mixing of hot and cold fluids at scales relevant to sustain combustion, in flames and was validated using direct numerical simulations data and experimental measurements. This paper reports on the first industrial application of the SDRM to SITL DLE combustion system. Previous applications have considered ideally premixed laboratory scale flames. The industrial application differs significantly in the complexity of the geometry, unmixedness and operating pressures. The model was implemented into ANSYS-CFX using their inbuilt command language. Simulations were run transiently using Scale Adaptive Simulation turbulence model, which switches between Large Eddy Simulation and Unsteady Reynolds Averaged Navier Stokes using a blending function. The model was validated in a research SITL DLE combustion system prior to being applied to the actual industrial geometry at real operating conditions. This system consists of the SGT-100 burner with a glass square-sectioned combustor allowing for detailed diagnostics. This paper shows the successful validation of the SDRM against time averaged temperature and velocity within measurement errors. The successful validation allowed application of the SDRM to the SGT-100 twin shaft at the relevant full load conditions. Limited validation data was available due to the complexity of measurement in the real geometry. Comparison of surface temperatures and combustor exit temperature profiles showed an improvement compared to EDM/FRC model. Furthermore, no unphysical phenomena were predicted. This paper presents the successful application of the SDRM to the industrial combustion system. The model shows a marked improvement in the prediction of temperature over the EDM/FRC model previously used. This is of significant importance in the future applications of combustion CFD for understanding of hardware mechanical integrity, combustion emissions and dynamics of the flame. Copyright © 2012 by ASME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results of three-dimensional Direct Numerical Simulation (DNS) of Moderate, Intense Low-oxygen Dilution (MILD) and conventional premixed turbulent combustion conducted using a skeletal mechanism including the effects of non-unity Lewis numbers and temperature dependent transport properties are analysed to investigate combustion characteristics using scalar gradient information. The DNS data is also used to synthesise laser induced fluorescence (LIF) signals of OH, CH2O, and CHO. These signals are analysed to verify if they can be used to study turbulent MILD combustion and it has been observed that at least two (OH and CH2O) LIF signals are required since the OH increase across the reaction zone is smaller in MILD combustion compared to premixed combustion. The scalar gradient PDFs conditioned on the reaction rate obtained from the DNS data and synthesised LIF signals suggests a strong gradient in the direction normal to the MILD reaction zone with moderate reaction rate implying flamelet combustion. However, the PDF of the normal gradient is as broad as for the tangential gradient when the reaction rate is high. This suggests a non-flamelet behaviour, which is due to interaction of reaction zones. The analysis of the conditional PDFs for the premixed case confirms the expected behaviour of scalar gradient in flamelet combustion. It has been shown that the LIF signals synthesised using 2D slices of DNS data also provide very similar insights. These results demonstrate that the so-called flameless combustion is not an idealised homogeneous reactive mixture but has common features of conventional combustion while containing distinctive characteristics. © 2013 The Combustion Institute.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The statistical behaviours of the instantaneous scalar dissipation rate Nc of reaction progress variable c in turbulent premixed flames have been analysed based on three-dimensional direct numerical simulation data of freely propagating statistically planar flame and V-flame configurations with different turbulent Reynolds number Ret. The statistical behaviours of N c and different terms of its transport equation for planar and V-flames are found to be qualitatively similar. The mean contribution of the density-variation term T1 is positive, whereas the molecular dissipation term (-D2) acts as a leading order sink. The mean contribution of the strain rate term T2 is predominantly negative for the cases considered here. The mean reaction rate contribution T3 is positive (negative) towards the unburned (burned) gas side of the flame, whereas the mean contribution of the diffusivity gradient term (D) assumes negative (positive) values towards the unburned (burned) gas side. The local statistical behaviours of Nc, T1, T2, T 3, (-D2), and f(D) have been analysed in terms of their marginal probability density functions (pdfs) and their joint pdfs with local tangential strain rate aT and curvature km. Detailed physical explanations have been provided for the observed behaviour. © 2014 Y. Gao et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The properties of hadronic matter at beta equilibrium in a wide range of densities are described by appropriate equations of state in the framework of the relativistic mean field model. Strange meson fields, namely the scalar meson field sigma*(975) and the vector meson field sigma*(1020), are included in the present work. We discuss and compare the results of the equation of state, nucleon effective mass, and strangeness fraction obtained by adopting the TM1, TMA, and GL parameter sets for nuclear sector and three different choices for the hyperon couplings. We find that the parameter set TM1 favours the onset of hyperons most, while at high densities the GL parameter set leads to the most hyperon-rich matter. For a certain parameter set (e.g. TM1), the most hyperon-rich matter is obtained for the hyperon potential model. The influence of the hyperon couplings on the effective mass of nucleon, is much weaker than that on the nucleon parameter set. The nonstrange mesons dominate essentially the global properties of dense hyperon matter. The hyperon potential model predicts the lowest value of the neutron star maximum mass of about 1.45 M-sun to be 0.4-0.5 M-sun lower than the prediction by using the other choices for hyperon couplings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By including the scalar isovector meson delta, we extend the relativistic mean field model and the one-boson exchange model of changing K-meson in the framework of Schaffner's relativistic mean field model. We re-consider the coupling constants for the interactions between the meson and the baryon and the interactions of the K meson with different mesons as well in various parameter sets. Using our model, we discuss the effective masses of K mesons in the hyperon-rich nuclear matter. We find that the density modification of the K meson mass in the strange nuclear matter is smaller than that in the pure nuclear matter. The influence of the scalar isovector meson 6 on the effective mass of kaon is rather evident. But the extent of the influence is different in different parameter sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the effect of the calar-isovector delta-meson field on the equation of state (EOS) and composition of hyperonic neutron star matter, and the properties of hyperonic neutron stars within the frame work of the relativistic mean field theory. The influence of the delta-field turns out to be quite different and generally weaker for hyperonic neutron star matter as compared to that for npe mu neutron star matter. We find that inclusion of the delta-field enhances the strangeness content slightly and consequently moderately softens the EOS of neutron star matter in its hyperonic phase. As for the composition of hyperonic star matter, the effect of the delta-field is shown to shift the onset of the negatively-charged (positively-charged) hyperons to slightly lower (higher) densities and to enhance (reduce) their abundances. The influence of the delta-field on the maximum mass of hyperonic neutron stars is found to be fairly weak, where as inclusion of the delta-field turns out to enhance sizably both the radii and the moments of inertia of neutron stars with given masses. It is also shown that the effects of the delta-field on the properties of hyperonic neutron stars remain similar in the case of switching off the Sigma hyperons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new measurement of subthreshold K*(892)(0) and K-0 production is presented. The experimental data complete the measurement of strange particles produced in Al + Al collisions at 1.9A GeV measured with the FOPI detector at SIS at GSI (Darmstadt). The K*(892)(0)/K-0 yield ratio is found to be 0.0315 +/- 0.006(stat.) +/- 0.012(syst.) and is in good agreement with the transport model prediction. These measurements provide information on the in-medium cross section of K+-pi(-) fusion, which is the dominant process in subthreshold K*(892)(0) production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One problem in most three-dimensional (3D) scalar data visualization techniques is that they often overlook to depict uncertainty that comes with the 3D scalar data and thus fail to faithfully present the 3D scalar data and have risks which may mislead users’ interpretations, conclusions or even decisions. Therefore this thesis focuses on the study of uncertainty visualization in 3D scalar data and we seek to create better uncertainty visualization techniques, as well as to find out the advantages/disadvantages of those state-of-the-art uncertainty visualization techniques. To do this, we address three specific hypotheses: (1) the proposed Texture uncertainty visualization technique enables users to better identify scalar/error data, and provides reduced visual overload and more appropriate brightness than four state-of-the-art uncertainty visualization techniques, as demonstrated using a perceptual effectiveness user study. (2) The proposed Linked Views and Interactive Specification (LVIS) uncertainty visualization technique enables users to better search max/min scalar and error data than four state-of-the-art uncertainty visualization techniques, as demonstrated using a perceptual effectiveness user study. (3) The proposed Probabilistic Query uncertainty visualization technique, in comparison to traditional Direct Volume Rendering (DVR) methods, enables radiologists/physicians to better identify possible alternative renderings relevant to a diagnosis and the classification probabilities associated to the materials appeared on these renderings; this leads to improved decision support for diagnosis, as demonstrated in the domain of medical imaging. For each hypothesis, we test it by following/implementing a unified framework that consists of three main steps: the first main step is uncertainty data modeling, which clearly defines and generates certainty types of uncertainty associated to given 3D scalar data. The second main step is uncertainty visualization, which transforms the 3D scalar data and their associated uncertainty generated from the first main step into two-dimensional (2D) images for insight, interpretation or communication. The third main step is evaluation, which transforms the 2D images generated from the second main step into quantitative scores according to specific user tasks, and statistically analyzes the scores. As a result, the quality of each uncertainty visualization technique is determined.