923 resultados para Ruthenium dioxide
Resumo:
Anthracene derivatives of ruthenium(II) arene compounds with 1,3,5-triaza-7-phosphatricyclo[3.3.1.1]decane (pta) or a sugar phosphite ligand, viz., 3,5,6-bicyclophosphite-1,2-O-isopropylidene-α-d-glucofuranoside, were prepared in order to evaluate their anticancer properties compared to the parent compounds and to use them as models for intracellular visualization by fluorescence microscopy. Similar IC(50) values were obtained in cell proliferation assays, and similar levels of uptake and accumulation were also established. The X-ray structure of [{Ru(η(6)-C(6)H(5)CH(2)NHCO-anthracene)Cl(2)(pta)] is also reported.
Resumo:
BACKGROUND: In acute respiratory failure, arterial blood gas analysis (ABG) is used to diagnose hypercapnia. Once non-invasive ventilation (NIV) is initiated, ABG should at least be repeated within 1 h to assess PaCO2 response to treatment in order to help detect NIV failure. The main aim of this study was to assess whether measuring end-tidal CO2 (EtCO2) with a dedicated naso-buccal sensor during NIV could predict PaCO2 variation and/or PaCO2 absolute values. The additional aim was to assess whether active or passive prolonged expiratory maneuvers could improve the agreement between expiratory CO2 and PaCO2. METHODS: This is a prospective study in adult patients suffering from acute hypercapnic respiratory failure (PaCO2 ≥ 45 mmHg) treated with NIV. EtCO2 and expiratory CO2 values during active and passive expiratory maneuvers were measured using a dedicated naso-buccal sensor and compared to concomitant PaCO2 values. The agreement between two consecutive values of EtCO2 (delta EtCO2) and two consecutive values of PaCO2 (delta PaCO2) and between PaCO2 and concomitant expiratory CO2 values was assessed using the Bland and Altman method adjusted for the effects of repeated measurements. RESULTS: Fifty-four datasets from a population of 11 patients (8 COPD and 3 non-COPD patients), were included in the analysis. PaCO2 values ranged from 39 to 80 mmHg, and EtCO2 from 12 to 68 mmHg. In the observed agreement between delta EtCO2 and deltaPaCO2, bias was -0.3 mmHg, and limits of agreement were -17.8 and 17.2 mmHg. In agreement between PaCO2 and EtCO2, bias was 14.7 mmHg, and limits of agreement were -6.6 and 36.1 mmHg. Adding active and passive expiration maneuvers did not improve PaCO2 prediction. CONCLUSIONS: During NIV delivered for acute hypercapnic respiratory failure, measuring EtCO2 using a dedicating naso-buccal sensor was inaccurate to predict both PaCO2 and PaCO2 variations over time. Active and passive expiration maneuvers did not improve PaCO2 prediction. TRIAL REGISTRATION: ClinicalTrials.gov: NCT01489150.
Resumo:
Tässä työssä on tutkittu ammoniakin ja hiilidioksidin erottamista adsorptio prosessilla ja suunniteltiin paineen muunteluun perustuvan adsorptioprosessin (PSA) käyttöä. Työn tarkoituksena oli laskea adsorptioon perustuvan prosessin kannattavuus melamiinitehtaan poistokaasujen erotuksessa. Tätä varten työssä suunniteltiin tehdasmitta-kaavainen prosessi ja arvioitiin sen kannattavuus. Työssä mitattiin adsorptiotasapainot, joiden perusteella sovitettiin sopiva kokeellinen adsorptioisotermi. Adsorptioisotermi lisättiin simulointiohjelmaan, jonka avulla suunniteltiin kaksi vaihtoehtoista pilot laitteistoa kaasujen erottamiseksi. Toisella pilot laitteistolla saadaan mitattua vain läpäisykäyrät, mutta paremmalla versiolla saadaan myös tietoa erotettujen komponenttien puhtaudesta. Suunnittelun tärkeimpiä lähtökohtia on molempien komponenttien mahdollisimman korkea puhtaus ja talteenottoaste. Täysimittakaavainen tehdas suunniteltiin simulointiohjelmiston avulla kahdelle eri kapasiteetille ja arvioitiin niiden kustannukset ja kannattavuus. Adsorptioprosessit osoittautuivat kannattaviksi kaasuseoksen erottamisessa kummassakin tapauksessa
Resumo:
A photoactivated ruthenium(II) arene complex has been conjugated to two receptor-binding peptides, a dicarba analogue of octreotide and the Arg-Gly-Asp (RGD) tripeptide. These peptides can act as"tumor-targeting devices" since their receptors are overexpressed on the membranes of tumor cells. Both ruthenium-peptide conjugates are stable in aqueous solution in the dark, but upon irradiation with visible light, the pyridyl-derivatized peptides were selectively photodissociated from the ruthenium complex, as inferred by UV-vis and NMR spectroscopy. Importantly, the reactive aqua species generated from the conjugates, [(η6-p-cym)Ru(bpm)(H2O)]2+, reacted with the model DNA nucleobase 9-ethylguanine as well as with guanines of two DNA sequences, 5′dCATGGCT and 5′dAGCCATG. Interestingly, when irradiation was performed in the presence of the oligonucleotides, a new ruthenium adduct involving both guanines was formed as a consequence of the photodriven loss of p-cymene from the two monofunctional adducts. The release of the arene ligand and the formation of a ruthenated product with a multidentate binding mode might have important implications for the biological activity of such photoactivated ruthenium(II) arene complexes. Finally, photoreactions with the peptide-oligonucleotide hybrid, Phac-His-Gly-Met-linker-p5′dCATGGCT, also led to arene release and to guanine adducts, including a GG chelate. The lack of interaction with the peptide fragment confirms the preference of such organometallic ruthenium(II) complexes for guanine over other potential biological ligands, such as histidine or methionine amino acids.
Resumo:
The mitigation of carbon dioxide is one of the scientific and technological challenges of the 2000s. Among the technologies that are under assessment, the recovery of carbon dioxide from power plants or industrial flue gases plays a strategic role. Recovered carbon dioxide can be either disposed in natural fields or used. The availability of large amounts of carbon dioxide may open new routes to its utilisation in biological, chemical and innovative technological processes. In this paper, the potential of carbon dioxide utilisation in the short-, medium-term is reviewed.
Resumo:
This dissertation "Identification of turning points in the research on titanium dioxide production and application" aims at detecting in scientific literatures emerging trends and sudden changes in titanium dioxide production and application. These key changes are then studied to determine its transient patterns and its effect on the research on titanium dioxide production and application The source of information is from bibliographic data which discussed titanium dioxide production and application. These bibliographic data where obtained from ISI Web of Knowledge and then formed into a network of clusters by applying software called Citespace.
Resumo:
The risk of cardiovascular diseases and sleep-disordered breathing increases after menopause. This cross-sectional study focuses on overnight transcutaneous carbon dioxide (TcCO2) measurements and their power to predict changes in the early markers of cardiovascular and metabolic diseases. The endothelial function of the brachial artery, the intima-media thickness of the carotid artery, blood pressure, glycosylated hemoglobin A1C and plasma levels of cholesterols and triglycerides were used as markers of cardiovascular and metabolic diseases. The study subjects consisted of healthy premenopausal women of 46 years of age and postmenopausal women of 56 years of age. From wakefulness to sleep, the TcCO2 levels increased more in postmenopausal women than in premenopausal women. In estrogen-users the increase in TcCO2 levels was even more pronounced than in other postmenopausal women. From the dynamic behaviour of the nocturnal TcCO2 signal, several important features were detected. These TcCO2 features had a remarkable role in the prediction of endothelial dysfunction and thickening of the carotid wall in healthy premenopausal women. In addition, these TcCO2 features were linked with blood pressure, lipid profile and glucose balance in postmenopausal women. The nocturnal TcCO2 profile seems to contain significant information, which is associated with early changes in cardiovascular diseases in middle-aged women. TcCO2 might not only measure the tissue carbon dioxide levels, but the TcCO2 signal variation may also reflect peripheral vasodynamic events caused by increased sympathetic activity during sleep.
Resumo:
It is well known that pH is an important parameter for controlling the eucalyptus pulp bleaching when using the final chlorine dioxide stage, since it affects the effectiveness of the process. Recommendations found in the literature for operating are in the 3.5 to 4.0 range. However, in this paper it was shown that final chlorine dioxide has better performance, with significant brightness gain while also preserving pulp quality, when it is operated at near neutral pH. This result can be explained by the generation of sodium bicarbonate in situ upon adding carbon dioxide at this stage.
Resumo:
Calcium oxide looping is a carbon dioxide sequestration technique that utilizes the partially reversible reaction between limestone and carbon dioxide in two interconnected fluidised beds, carbonator and calciner. Flue gases from a combustor are fed into the carbonator where calcium oxide reacts with carbon dioxide within the gases at a temperature of 650 ºC. Calcium oxide is transformed into calcium carbonate which is circulated into the regenerative calciner, where calcium carbonate is returned into calcium oxide and a stream of pure carbon dioxide at a higher temperature of 950 ºC. Calcium oxide looping has proved to have a low impact on the overall process efficiency and would be easily retrofitted into existing power plants. This master’s thesis is done in participation to an EU funded project CaOling as a part of the Lappeenranta University of Technology deliverable, reactor modelling and scale-up tools. Thesis concentrates in creating the first model frame and finding the physically relevant phenomena governing the process.
Resumo:
Pure and Fe(III)-doped TiO2 suspensions were prepared by the sol gel method with the use of titanium isopropoxide (Ti(OPri)4) as precursor material. The properties of doped materials were compared to TiO2 properties based on the characterization by thermal analysis (TG-DTA and DSC), X-ray powder diffractometry and spectroscopy measurements (FTIR). Both undoped and doped TiO2 suspensions were used to coat metallic substrate as a mean to make thin-film electrodes. Thermal treatment of the precursors at 400ºC for 2 h in air resulted in the formation of nanocrystalline anatase TiO2. The thin-film electrodes were tested with respect to their photocatalytic performance for degradation of a textile dye in aqueous solution. The plain TiO2 remains as the best catalyst at the conditions used in this report.
Resumo:
Computational material science with the Density Functional Theory (DFT) has recently gained a method for describing, for the first time the non local bonding i.e., van der Waals (vdW) bonding. The newly proposed van der Waals-Density Functional (vdW-DF) is employed here to address the role of non local interactions in the case of H2 adsorption on Ru(0001) surface. The later vdW-DF2 implementation with the DFT code VASP (Vienna Ab-initio Simulation Package) is used in this study. The motivation for studying H2 adsorption on ruthenium surface arose from the interest to hydrogenation processes. Potential energy surface (PES) plots are created for adsorption sites top, bridge, fcc and hcp, employing the vdW-DF2 functional. The vdW-DF yields 0.1 eV - 0.2 eV higher barriers for the dissociation of the H2 molecule; the vdW-DF seems to bind the H2 molecule more tightly together. Furthermore, at the top site, which is found to be the most reactive, the vdW functional suggests no entrance barrier or in any case smaller than 0.05 eV, whereas the corresponding calculation without the vdW-DF does. Ruthenium and H2 are found to have the opposite behaviors with the vdW-DF; Ru lattice constants are overestimated while H2 bond length is shorter. Also evaluation of the CPU time demand of the vdW-DF2 is done from the PES data. From top to fcc sites the vdW-DF computational time demand is larger by 4.77 % to 20.09 %, while at the hcp site it is slightly smaller. Also the behavior of a few exchange correlation functionals is investigated along addressing the role of vdW-DF. Behavior of the different functionals is not consistent between the Ru lattice constants and H2 bond lengths. It is thus difficult to determine the quality of a particular exchange correlation functional by comparing equilibrium separations of the different elements. By comparing PESs it would be computationally highly consuming.
Resumo:
PURPOSE: To evaluate the effectiveness, recurrence rate, and complications of carbon-dioxide laser vaporization in the treatment of Bartholin's gland cysts. METHODS: A retrospective study including 127 patients with symptomatic Bartholin' gland cysts submitted to carbon-dioxide laser vaporization at our institution from January 2005 to June 2011. Patients with Bartholin's gland abscesses and those suspected of having neoplasia were excluded. All procedures were performed in an outpatient setting under local anaesthesia. Clinical records were reviewed for demographic characteristics, anatomic parameters, intraoperative and postoperative complications, and follow-up data. Data were stored and analyzed in Microsoft Excel® 2007 software. A descriptive statistical analysis was performed, and its results were expressed as frequency (percentage) or mean±standard deviation. Complication, recurrence, and cure rates were calculated. RESULTS: The mean age of the patients was 37.3±9.5 years-old (range from 18 to 61 years-old). Seventy percent (n=85) of them were multiparous. The most common symptom was pain and 47.2% (n=60) of patients had a history of previous medical and/or surgical treatment for Bartholin's gland abscesses. Mean cyst size was 2.7±0.9 cm. There were three (2.4%) cases of minor intraoperative bleeding. Overall, there were 17 (13.4%) recurrences within a mean of 14.6 months (range from 1 to 56 months): ten Bartholin's gland abscesses and seven recurrent cysts requiring reintervention. The cure rate after single laser treatment was 86.6%. Among the five patients with recurrent disease that had a second laser procedure, the cure rate was 100%. CONCLUSIONS: At this institution, carbon-dioxide laser vaporization seems to be a safe and effective procedure for the treatment of Bartholin's gland cysts.
Resumo:
This thesis presents a one-dimensional, semi-empirical dynamic model for the simulation and analysis of a calcium looping process for post-combustion CO2 capture. Reduction of greenhouse emissions from fossil fuel power production requires rapid actions including the development of efficient carbon capture and sequestration technologies. The development of new carbon capture technologies can be expedited by using modelling tools. Techno-economical evaluation of new capture processes can be done quickly and cost-effectively with computational models before building expensive pilot plants. Post-combustion calcium looping is a developing carbon capture process which utilizes fluidized bed technology with lime as a sorbent. The main objective of this work was to analyse the technological feasibility of the calcium looping process at different scales with a computational model. A one-dimensional dynamic model was applied to the calcium looping process, simulating the behaviour of the interconnected circulating fluidized bed reactors. The model incorporates fundamental mass and energy balance solvers to semi-empirical models describing solid behaviour in a circulating fluidized bed and chemical reactions occurring in the calcium loop. In addition, fluidized bed combustion, heat transfer and core-wall layer effects were modelled. The calcium looping model framework was successfully applied to a 30 kWth laboratory scale and a pilot scale unit 1.7 MWth and used to design a conceptual 250 MWth industrial scale unit. Valuable information was gathered from the behaviour of a small scale laboratory device. In addition, the interconnected behaviour of pilot plant reactors and the effect of solid fluidization on the thermal and carbon dioxide balances of the system were analysed. The scale-up study provided practical information on the thermal design of an industrial sized unit, selection of particle size and operability in different load scenarios.
Resumo:
The aim of this thesis was to identify the best grease removal technique with the application of low power of UV light to TiO2 coated grease filters. The treatment with various power series of ozone generating and ozone free lamps to normal grease filters and TiO2 coated grease filters were examined and the obtained results are compared to each other in this paper. The effect of ozone reaction was observed and compared with the effect of TiO2. The experiments were solely based on the photo oxidation and photo catalytic oxidation reactions. TiO2 is a green catalyst used in the photocatalytic reaction. Sunflower oil was used for grease production and tetracholoroethylene as a solvent. Grease samples were collected from the ventilation duct connected to the cooking hood system. Sample extraction was done in ultrasonic bath with the principle of sonication. The sample analysis was done by FTIR machine. The result determining the concentration of grease was the quantification of saturated C-H bonds in the chosen peak group of the spectrum. A very low power of UVC light functions perfectly with the Titanium dioxide. The experimental results have shown the combined treatment of titanium dioxide and UV light is an effective method in grease removal process. The photocatalytic reaction with titanium dioxide is better than photo oxidation reaction with ozone treatment. Photocatalytic reaction is environmentally friendly, energy efficient and economical.
Resumo:
The aim of the present study was to verify the sensitivity to the carbon dioxide (CO2) challenge test of panic disorder (PD) patients with respiratory and nonrespiratory subtypes of the disorder. Our hypothesis is that the respiratory subtype is more sensitive to 35% CO2. Twenty-seven PD subjects with or without agoraphobia were classified into respiratory and nonrespiratory subtypes on the basis of the presence of respiratory symptoms during their panic attacks. The tests were carried out in a double-blind manner using two mixtures: 1) 35% CO2 and 65% O2, and 2) 100% atmospheric compressed air, 20 min apart. The tests were repeated after 2 weeks during which the participants in the study did not receive any psychotropic drugs. At least 15 of 16 (93.7%) respiratory PD subtype patients and 5 of 11 (43.4%) nonrespiratory PD patients had a panic attack during one of two CO2 challenges (P = 0.009, Fisher exact test). Respiratory PD subtype patients were more sensitive to the CO2 challenge test. There was agreement between the severity of PD measured by the Clinical Global Impression (CGI) Scale and the subtype of PD. Higher CGI scores in the respiratory PD subtype could reflect a greater sensitivity to the CO2 challenge due to a greater severity of PD. Carbon dioxide challenges in PD may define PD subtypes and their underlying mechanisms.