985 resultados para Root growth


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In agriculture, the soil strength is used to describe the susceptibility to deformation by pressure caused by agricultural machine. The purpose of this study was to compare different methods for estimating the inherent soil strength and to identify their suitability for the evaluation of load support capacity, compaction susceptibility and root growth. The physical, chemical, mineralogical and intrinsic strength properties of seven soil samples, collected from five sampling pits at different locations in Brazil, were measured. Four clay (CS) and three sandy clay loam (SCL) soils were used. The clay soils were collected on a farm in Santo Ângelo, RS (28 º 16 ' 16 '' S; 54 º 13 ' 11 '' W 290 m); A and B horizons at the Universidade Federal de Lavras, Lavras, MG (21 º 13 ' 47 '' S; 44 º 58 ' 6'' W; 918 m) and on the farm Sygenta, in Uberlandia, MG (18 º 58 ' 37 '' S; 48 º 12 ' 05 '' W 866 m). The sandy clay loam soils were collected in Aracruz, ES (19 º 47 ' 10 '' S; 40 º 16 ' 29 '' W 81 m), and on the farm Xavier, Lavras, MG (21 º 13 ' 24 '' S; 45 º 05 ' 00 '' W; 844 m). Soil strength was estimated based on measurements of: (a) a pneumatic consolidometer, (b) manual pocket (non-rotating) penetrometer; and (c) automatic (rotating) penetrometer. The results of soil strength properties were similar by the three methods. The soil structure had a significant influence on soil strength. Results of measurements with both the manual pocket and the electric penetrometer were similar, emphasizing the influence of soil texture. The data showed that, to enhance the reliability of predictions of preconsolidation pressure by penetrometers, it is better to separate the soils into the different classes, rather than analyze them jointly. It can be concluded that the consolidometer method, although expensive, is the best when evaluations of load support capacity and compaction susceptibility of soil samples are desired.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study had the purpose of evaluating the effects of two management types of sugarcane: harvesting of burnt cane (BCH) and mechanized harvesting of unburnt green cane (MCH), on some soil physical properties of a dystrophic Rhodic Haplustox. The data were then compared with results for the same soil type under native forest. A completely randomized design was used, with three treatments and 20 replications. The following characteristics were determined: organic matter, aggregate stability, soil bulk density, and porosity at depths of 0-0.20 m and soil penetration resistance. After 15 years of cultivation, there were some alterations in the soil under cane burnt before harvesting, evidenced by a drop in the weighted average diameter of stable aggregates in water and increased soil bulk density. Significant changes were also detected in total porosity and pore distribution under both harvesting systems. Critical values for penetration resistance were observed in the area under mechanized sugar cane harvesting, with a value of 4.5 MPa in the 40-55 cm layer. This value is considered high and could indicate compaction and restriction of root growth. Soil properties under the green cane (unburned) management system were closest to those of the soil under native forest.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Soil water availability to plants is affected by soil compaction and other variables. The Least Limiting Water Range (LLWR) comprises soil physical variables affecting root growth and soil water availability, and can be managed by either mechanical or biological methods. There is evidence that effects of crop rotations could last longer than chiseling, so the objective of this study was to assess the effect of soil chiseling or growing cover crops under no-till (NT) on the LLWR. Crop rotations involving triticale (X Triticosecale) and sunflower (Helianthus annuus) in the fall-winter associated with millet (Pennisetum glaucum), sorghum (Sorghum bicolor) and sunn hemp (Crotalaria juncea) as cover crops preceding soybean (Glycine max) were repeated for three consecutive years. In the treatment with chiseling (performed only in the first year), the area was left fallow between the fall-winter and summer crops. The experiment was carried out in Botucatu, São Paulo State, Brazil, from 2003 to 2006 on a Typic Rhodudalf. The LLWR was determined in soil samples taken from the layers 0-20 cm and 20- 40 cm, after chemical desiccation of the cover crops in December of the first and third year of the experiment. Chiseling decreases soil bulk density in the 0-20 cm soil layer, increasing the LLWR magnitude by lowering the soil water content at which penetration resistance reaches 2.0 MPa; this effect is present up to the third year after chiseling and can reach to a depth of 0.40 m. Crop rotations involving sunflower + sunn hemp, triticale + millet and triticale + sunn hemp for three years prevented soil bulk density from exceeding the critical soil bulk density in the 0- 0.20 m layer. This effect was observed to a depth of 0.40 m after three years of chiseling under crop rotations involving forage sorghum. Hence, chiseling and some crop rotations under no tillage are effective in increasing soil quality assessed by the LLWR.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Soil penetration resistance is an important property that affects root growth and elongation and water movement in the soil. Since no-till systems tend to increase organic matter in the soil, the purpose of this study was to evaluate the efficiency with which soil penetration resistance is estimated using a proposed model based on moisture content, density and organic matter content in an Oxisol containing 665, 221 and 114 g kg-1 of clay, silt and sand respectively under annual no-till cropping, located in Londrina, Paraná State, Brazil. Penetration resistance was evaluated at random locations continually from May 2008 to February 2011, using an impact penetrometer to obtain a total of 960 replications. For the measurements, soil was sampled at depths of 0 to 20 cm to determine gravimetric moisture (G), bulk density (D) and organic matter content (M). The penetration resistance curve (PR) was adjusted using two non-linear models (PR = a Db Gc and PR' = a Db Gc Md), where a, b, c and d are coefficients of the adjusted model. It was found that the model that included M was the most efficient for estimating PR, explaining 91 % of PR variability, compared to 82 % of the other model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The cultivation of sugarcane with intensive use of machinery, especially for harvest, induces soil compaction, affecting the crop development. The control of agricultural traffic is an alternative of management in the sector, with a view to preserve the soil physical quality, resulting in increased sugarcane root growth, productivity and technological quality. The objective of this study was to evaluate the physical quality of an Oxisol with and without control traffic and the resulting effects on sugarcane root development, productivity and technological quality. The following managements were tested: no traffic control (NTC), traffic control consisting of an adjustment of the track width of the tractor and sugarcane trailer (TC1) and traffic control consisting of an adjustment of the track width of the tractor and trailer and use of an autopilot (TC2). Soil samples were collected (layers 0.00-0.10; 0.10-0.20 and 0.20-0.30 m) in the plant rows, inter-row center and seedbed region, 0.30 m away from the plant row. The productivity was measured with a specific weighing scale. The technological variables of sugarcane were measured in each plot. Soil cores were collected to analyze the root system. In TC2, the soil bulk density and compaction degree were lowest and total porosity and macroporosity highest in the plant row. Soil penetration resistance in the plant row, was less than 2 MPa in TC1 and TC2. Soil aggregation and total organic carbon did not differ between the management systems. The root surface and volume were increased in TC1 and TC2, with higher productivity and sugar yield than under NTC. The sugarcane variables did not differ between the managements. The soil physical quality in the plant row was preserved under management TC1 and TC2, with an improved root development and increases of 18.72 and 20.29 % in productivity and sugar yield, respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In Arabidopsis, interplay between nuclear auxin perception and trans-cellular polar auxin transport determines the transcriptional auxin response. In brevis radix (brx) mutants, this response is impaired, probably indirectly because of disturbed crosstalk between the auxin and brassinosteroid pathways. Here we provide evidence that BRX protein is plasma membrane-associated, but translocates to the nucleus upon auxin treatment to modulate cellular growth, possibly in conjunction with NGATHA class B3 domain-type transcription factors. Application of the polar auxin transport inhibitor naphthalene phthalamic acid (NPA) resulted in increased BRX abundance at the plasma membrane. Thus, nuclear translocation of BRX could depend on cellular auxin concentration or on auxin flux. Supporting this idea, NPA treatment of wild-type roots phenocopied the brx root meristem phenotype. Moreover, BRX is constitutively turned over by the proteasome pathway in the nucleus. However, a stabilized C-terminal BRX fragment significantly rescued the brx root growth phenotype and triggered a hypocotyl gain-of-function phenotype, similar to strong overexpressors of full length BRX. Therefore, although BRX activity is required in the nucleus, excess activity interferes with normal development. Finally, similar to the PIN-FORMED 1 (PIN1) auxin efflux carrier, BRX is polarly localized in vascular cells and subject to endocytic recycling. Expression of BRX under control of the PIN1 promoter fully rescued the brx short root phenotype, suggesting that the two genes act in the same tissues. Collectively, our results suggest that BRX might provide a contextual readout to synchronize cellular growth with the auxin concentration gradient across the root tip.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The graphical representation of spatial soil properties in a digital environment is complex because it requires a conversion of data collected in a discrete form onto a continuous surface. The objective of this study was to apply three-dimension techniques of interpolation and visualization on soil texture and fertility properties and establish relationships with pedogenetic factors and processes in a slope area. The GRASS Geographic Information System was used to generate three-dimensional models and ParaView software to visualize soil volumes. Samples of the A, AB, BA, and B horizons were collected in a regular 122-point grid in an area of 13 ha, in Pinhais, PR, in southern Brazil. Geoprocessing and graphic computing techniques were effective in identifying and delimiting soil volumes of distinct ranges of fertility properties confined within the soil matrix. Both three-dimensional interpolation and the visualization tool facilitated interpretation in a continuous space (volumes) of the cause-effect relationships between soil texture and fertility properties and pedological factors and processes, such as higher clay contents following the drainage lines of the area. The flattest part with more weathered soils (Oxisols) had the highest pH values and lower Al3+ concentrations. These techniques of data interpolation and visualization have great potential for use in diverse areas of soil science, such as identification of soil volumes occurring side-by-side but that exhibit different physical, chemical, and mineralogical conditions for plant root growth, and monitoring of plumes of organic and inorganic pollutants in soils and sediments, among other applications. The methodological details for interpolation and a three-dimensional view of soil data are presented here.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ABSTRACT Perennial forage crops used in crop-livestock integration (CLI) are able to accumulate large amounts of straw on the soil surface in no-tillage system (NTS). In addition, they can potentially produce large amounts of soluble organic compounds that help improving the efficiency of liming in the subsurface, which favors root growth, thus reducing the risks of loss in yield during dry spells and the harmful effects of “overliming”. The aim of this study was to test the effects of liming on two models of agricultural production, with and without crop-livestock integration, for 2 years. Thus, an experiment was conducted in a Latossolo Vermelho (Oxisol) with a very clayey texture located in an agricultural area under the NTS in Bandeirantes, PR, Brazil. Liming was performed to increase base saturation (V) to 65, 75, and 90 % while one plot per block was maintained without the application of lime (control). A randomized block experimental design was adopted arranged in split-plots and four plots/block, with four replications. The soil properties evaluated were: pH in CaCl2, soil organic matter (SOM), Ca, Mg, K, Al, and P. The effects of liming were observed to a greater depth and for a long period through mobilization of ions in the soil, leading to a reduction in SOM and Al concentration and an increase in pH and the levels of Ca and Mg. In the first crop year, adoption of CLI led to an increase in the levels of K and Mg and a reduction in the levels of SOM; however, in the second crop year, the rate of decline of SOM decreased compared to the decline observed in the first crop year, and the level of K increased, whereas that of P decreased. The extent of the effects of liming in terms of depth and improvement in the root environment from the treatments were observed only partially from the changes observed in the chemical properties studied.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ABSTRACT Understanding the spatial behavior of soil physical properties under no-tillage system (NT) is required for the adoption and maintenance of a sustainable soil management system. The aims of this study were to quantify soil bulk density (BD), porosity in the soil macropore domain (PORp) and in the soil matrix domain (PORm), air capacity in the soil matrix (ACm), field capacity (FC), and soil water storage capacity (FC/TP) in the row (R), interrow (IR), and intermediate position between R and IR (designated IP) in the 0.0-0.10 and 0.10-0.20 m soil layers under NT; and to verify if these soil properties have systematic variation in sampling positions related to rows and interrows of corn. Soil sampling was carried out in transect perpendicular to the corn rows in which 40 sampling points were selected at each position (R, IR, IP) and in each soil layer, obtaining undisturbed samples to determine the aforementioned soil physical properties. The influence of sampling position on systematic variation of soil physical properties was evaluated by spectral analysis. In the 0.0-0.1 m layer, tilling the crop rows at the time of planting led to differences in BD, PORp, ACm, FC and FC/TP only in the R position. In the R position, the FC/TP ratio was considered close to ideal (0.66), indicating good water and air availability at this sampling position. The R position also showed BD values lower than the critical bulk density that restricts root growth, suggesting good soil physical conditions for seed germination and plant establishment. Spectral analysis indicated that there was systematic variation in soil physical properties evaluated in the 0.0-0.1 m layer, except for PORm. These results indicated that the soil physical properties evaluated in the 0.0-0.1 m layer were associated with soil position in the rows and interrows of corn. Thus, proper assessment of soil physical properties under NT must take into consideration the sampling positions and previous location of crop rows and interrows.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ABSTRACT Applications of phosphogypsum (PG) provide nutrients to the soil and reduce Al3+ activity, favoring soil fertility and root growth, but allow Mg2+ mobilization through the soil profile, resulting in variations in the PG rate required to achieve the optimum crop yield. This study evaluated the effect of application rates and splitting of PG on soil fertility of a Typic Hapludox, as well as the influence on annual crops under no-tillage. Using a (4 × 3) + 1 factorial structure, the treatments consisted of four PG rates (3, 6, 9, and 12 Mg ha-1) and three split applications (P1 = 100 % in 2009; P2 = 50+50 % in 2009 and 2010; P3 = 33+33+33 % in 2009, 2010 and 2011), plus a control without PG. The soil was sampled six months after the last PG application, in stratified layers to a depth of 0.8 m. Corn, wheat and soybean were sown between November 2011 and December 2012, and leaf samples were collected for analysis when at least 50 % of the plants showed reproductive structures. The application of PG increased Ca2+ concentrations in all sampled soil layers and the soil pH between 0.2 and 0.8 m, and reduced the concentrations of Al3+ in all layers and of Mg2+ to a depth of 0.6 m, without any effect of splitting the applications. The soil Ca/Mg ratio increased linearly to a depth of 0.6 m with the rates and were found to be higher in the 0.0-0.1 m layer of the P2 and P3 treatments than without splitting (P1). Sulfur concentrations increased linearly by application rates to a depth of 0.8 m, decreasing in the order P3>P2>P1 to a depth of 0.4 m and were higher in the treatments P3 and P2 than P1 between 0.4-0.6 m, whereas no differences were observed in the 0.6-0.8 m layer. No effect was recorded for K, P and potential acidity (H+Al). The leaf Ca and S concentration increased, while Mg decreased for all crops treated with PG, and there was no effect of splitting the application. The yield response of corn to PG rates was quadratic, with the maximum technical efficiency achieved at 6.38 Mg ha-1 of PG, while wheat yield increased linearly in a growing season with a drought period. Soybean yield was not affected by the PG rate, and splitting had no effect on the yield of any of the crops. Phosphogypsum improved soil fertility in the profile, however, Mg2+ migrated downwards, regardless of application splitting. Splitting the PG application induced a higher Ca/Mg ratio in the 0.0-0.1 m layer and less S leaching, but did not affect the crop yield. The application rates had no effect on soybean yield, but were beneficial for corn and, especially, for wheat, which was affected by a drought period during growth.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High available aluminium and low levels of calcium below the ploughed zone of the soil are limiting factors for agricultural sustainability in the Brazilian Cerrados (Savannahs). The mineral stresses compound with dry spells effect by preventing deep root growth of cultivated plants and causes yield instability. The mode of inheritance for grain yield and mineral absorption ratio of a diallel cross in soybeans [Glycine max (L.) Merrill] grown in high and low Al areas was identified. Differences among the genotypes for grain yield were more evident in the high Al, by grouping tolerant and non-tolerant genotypes for their respective arrays in the hybrids. A large proportion of genetic variance was additive for grain yield and mineral absorption ratio in both environments. High heritability values suggest that soybeans can be improved by crosses among Al-tolerant genotypes, using modified pedigree, early generation and recurrent selection schemes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Glyphosate is a systemic, nonselective, postemergence herbicide that inhibits growth of both weeds and crop plants. Once inside the plant, glyphosate interferes with biosynthesis of aromatic amino acids phenylalanine, tyrosine, and tryptophan, by inhibiting the activity of 5enolpyruvylshikimate-3-phosphate synthase (EPSPS), a key enzyme of the shikimate pathway. The objective of this work was to develop a simple, effective and inexpensible method for identification of transgenic soybean tolerant to glyphosate. This technique consisted in germinating soybean seeds in filter paper moistened with 100 to 200 muM of glyphosate. Transgenic soybean seeds tolerant to glyphosate germinated normally in this solution and, between 7 and 10 days, started to develop a primary root system. However non-transgenic seeds stopped primary root growth and emission of secondary roots.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this work was to evaluate the humus composition from an Ultisol from Campos dos Goytacazes, RJ, Brazil. Soil samples of four depths (0-0.05, 0.05-0.10, 0.10-0.20 and 0.20-0.40 m) and its chemical nature were analysed by elemental composition, E4/E6 ratios and Fourier transformed infrared spectroscopy. The bioactivity of these humified substances was evaluated through their action on maize root growth and H+-ATPase activity of roots microsomes. In topsoil, the content of high condensed alkaline soluble humic substances is greater than that found in the subsuperficial layers. The chemical nature of humic and fulvic acids also varied with the soil depth. The humic acids isolated from the soil samples exhibited higher bioactivity compared with the fulvic acids. Moreover, the results suggest that more condensed humic substances can promote highest stimulation of the microsomal H+-ATPases from maize roots. These data reinforce the concept that the activity of the H+ pumps can be used as a biochemical marker for evaluation of humic substances bioactivity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Observations gained from model organisms are essential, yet it remains unclear to which degree they are applicable to distant relatives. For example, in the dicotyledon Arabidopsis thaliana (Arabidopsis), auxin biosynthesis via indole-3-pyruvic acid (IPA) is essential for root development and requires redundant TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1 (TAA1) and TAA1-RELATED (TAR) genes. A promoter T-DNA insertion in the monocotyledon Brachypodium distachyon (Brachypodium) TAR2-LIKE gene (BdTAR2L) severely down-regulates expression, suggesting reduced tryptophan aminotransferase activity in this mutant, which thus represents a hypomorphic Bdtar2l allele (Bdtar2l(hypo) ). Counterintuitive however, Bdtar2l(hypo) mutants display dramatically elongated seminal roots because of enhanced cell elongation. This phenotype is also observed in another, stronger Bdtar2l allele and can be mimicked by treating wild type with L-kynerunine, a specific TAA1/TAR inhibitor. Surprisingly, L-kynerunine-treated as well as Bdtar2l roots display elevated rather than reduced auxin levels. This does not appear to result from compensation by alternative auxin biosynthesis pathways. Rather, expression of YUCCA genes, which are rate-limiting for conversion of IPA to auxin, is increased in Bdtar2l mutants. Consistent with suppression of Bdtar2l(hypo) root phenotypes upon application of the ethylene precursor 1-aminocyclopropane-1-carboxylic-acid (ACC), BdYUCCA genes are down-regulated upon ACC treatment. Moreover, they are up-regulated in a downstream ethylene-signaling component homolog mutant, Bd ethylene insensitive 2-like 1, which also displays a Bdtar2l root phenotype. In summary, Bdtar2l phenotypes contrast with gradually reduced root growth and auxin levels described for Arabidopsis taa1/tar mutants. This could be explained if in Brachypodium, ethylene inhibits the rate-limiting step of auxin biosynthesis in an IPA-dependent manner to confer auxin levels that are sub-optimal for root cell elongation, as suggested by our observations. Thus, our results reveal a delicate homeostasis of local auxin and ethylene activity to control cell elongation in Brachypodium roots and suggest alternative wiring of auxin-ethylene crosstalk as compared to Arabidopsis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La variabilitat de l’estequiometria elemental dels organismes a causa de l’ontogènia i dels canvis en les condicions ambientals està relacionada amb la variabilitat metabolòmica. Això és degut a que els elements operen majoritàriament com a parts de compostos moleculars. Així doncs, la hipòtesi realitzada per Rivas-Ubach et al., (2012), la qual postula que els estudis estequiomètrics i metabolòmics d’un conjunt d’espècies vegetals exposades a condicions ambientals diferents han de mostrar la flexibilitat que posseeix un organisme a l’hora de modular la seva estequiometria i el seu metaboloma per tal de mantenir la forma òptima sota condicions variants, esdevé la base que sustenta l’experiment EVENT II. A partir de l’estudi de les relacions estequiomètriques, -principalment C:N:P- i del metabolisme d’Alopecurus pratensis i Holcus lanatus en situacions simulades de sequera, s’han obtingut resultats que evidencien una clara diferenciació a nivell d’espècie, de part de la planta i de tractament. El metabolisme i l’estequiometria diferencial que presenten ambdues gramínies dóna suport a la hipòtesi del nínxol biogeoquímic. A nivell de parts de la planta, s’observa un clar augment de la relació C:nutrients a la part aèria, mentre que a les arrels, aquesta relació disminueix. La part aèria doncs, necessita més C per invertir en funcions estructurals, mentre que l’elevada concentració de nutrients i metabòlits a les arrels donen indicis de la presència de mecanismes osmòtics per a facilitar l’entrada d’aigua, i de creixement, per a la recerca de noves fonts d’aigua, observant-se una disminució de la relació part aèria:arrels. Un altre factor que demostra aquest creixement radicular són les baixes relacions N:P trobades, fet que dóna suport a la hipòtesi de la velocitat de creixement.