979 resultados para Root:shoot ratio


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of metamorphic high electron mobility transistors (MMHEMTs) with different V/III flux ratios are grown on GaAs (001) substrates by molecular beam epitaxy (XIBE). The samples are analysed by using atomic force microscopy (AFM), Hall measurement, and low temperature photoluminescence (PL). The optimum V/III ratio in a range from 15 to 60 for the growth of MMHEMTs is found to be around 40. At this ratio, the root mean square (RMS) roughness of the material is only 2.02 nm; a room-temperature mobility and a sheet electron density are obtained to be 10610.0cm(2)/(V.s) and 3.26 x 10(12)cm(-2) respectively. These results are equivalent to those obtained for the same structure grown on InP substrate. There are two peaks in the PL spectrum of the structure, corresponding to two sub-energy levels of the In0.53Ga0.47 As quantum well. It is found that the photoluminescence intensities of the two peaks vary with the V/III ratio, for which the reasons are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ZnTe epilayers were grown on GaAs(0 0 1) substrates by molecular beam epitaxy (MBE) at different VI/II beam equivalent pressure (BEP) ratios (R-VI/II) in a wide range of 0.96-11 with constant Zn flux. Based on in situ reflection high-energy electron diffraction (RHEED) observation, two-dimensional (2D) growth mode can be formed by increasing the R-VI/II to 2.8. The Te/Zn pressure ratios lower than 4.0 correspond to Zn-rich growth state, while the ratios over 6.4 correspond to Te-rich one. The Zn sticking coefficient at various VI/II ratios are derived by the growth rate measurement. The ZnTe epilayer grown at a R-VI/II of 6.4 displays the narrowest full-width at half-maximum (FWHM) of double-crystal X-ray rocking curve (DCXRC) for (0 0 4) reflection. Atomic force microscopy (AFM) characterization shows that the grain size enlarges drastically with the R-VI/II. The surface root-mean-square (RMS) roughness decreases firstly, attains a minimum of 1.14 nm at a R-VI/II of 4.0 and then increases at higher ratios. It is suggested that the most suitable R-VI/II be controlled between 4.0 and 6.4 in order to grow high-quality ZnTe epitaxial thin films.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

大气CO2浓度的增加已经成为不可争议的事实。预计本世纪末大气CO2浓度将增加到约700µmol mol-1。森林年光合产量约占陆地生态系统年光合产量的70%。森林树木是一个巨大的生物碳库,约占全球陆地生物碳库的85%。森林树木对CO2的固定潜力是缓解由大气CO2浓度升高引起的未来全球气候变化问题的决定性因子之一。红桦(Betula albosinensis Burk.)是川西亚高山采伐迹地自然或人工恢复的重要树种。本研究以1a红桦幼苗为模式植物,采用人工模拟的方法,研究CO2浓度升高对不同种内竞争强度(种群水平)下红桦幼苗的生理特征、生长、干物质积累及其分配的影响,探讨在种内竞争生长条件下红桦幼苗的“光合适应机理”与生长特征,为西南亚高山森林生产力对未来全球变化的预测提供重要参考。 本研究的主要结果如下: 1)在种内竞争生长条件下红桦幼苗经过CO2浓度升高熏蒸4个月后,叶片出现“光合适应”现象。与对照相比,低种植密度(28株m-2)和高种植密度(84株m-2)条件下的红桦幼苗净光合速率(A)、气孔导度(gs)、蒸腾速率(E)、表观量子产量(AQY)和羧化速率(CE)显著降低,而水分利用效率(WUE)则显著提高。CO2浓度升高处理的红桦幼苗叶片Rubisco活性、单位叶面积N浓度、叶绿素a、叶绿素b和类胡萝卜素浓度都显著降低。但CO2浓度对红桦幼苗的叶绿素a与叶绿素b的比值没有显著影响。CO2浓度升高显著增加红桦幼苗单位叶面积的非结构性碳水化合物(TNC)浓度,结果是红桦幼苗的比叶面积(SLA,cm2 g-1)显著降低。 2)与对照相比,CO2浓度升高处理的红桦幼苗高、基径、单叶面积和侧枝的相对生长速率(R GR)显著提高,尤其在试验处理的早期。CO2浓度升高既增加单株红桦幼苗总叶片数量又增加单叶面积,结果是单株红桦幼苗的总叶面积比对照显著增加。 3)CO2浓度升高处理显著增加红桦幼苗干物质积累(尤其是细根生物量),改变了红桦幼苗生物量的分配格局。与对照相比,CO2浓度升高处理的红桦幼苗叶重比(LWR)、叶面积比(LAR)、叶根重比(Wl/Wr)和源汇重比(leaf weight to non-leaf weight ratio, Wsource/Wsink)显著下降(高种植密度的LWR除外),而根冠比(R/S)则显著增加。在两种种植密度条件下,CO2浓度升高显著增加红桦幼苗根生物量的分配比率,显著降低叶片的生物量分配比率,对主茎、侧枝以及地上生物量的分配比率不变或约有下降。 总之,长期生长在CO2浓度升高条件下的红桦幼苗光合能力下降,并伴随Rubisco活性、叶N浓度、光合色素浓度的显著降低以及TNC浓度的显著增加。支持树木光合速率下降与Rubisco活性、叶N浓度下降以及TNC浓度增加紧密相关的假设。CO2浓度升高处理红桦幼苗的早期相对生长速率大大高于对照,而后期迅速下降,说明红桦幼苗生物量的显著增加主要归功于CO2浓度升高的早期促进作用和叶面积的显著增加。CO2浓度升高显著增加红桦幼苗根系生物量和根冠比,表明红桦幼苗“额外”固定的C向根系转移。 The steady increae of atmospheric CO2 concentration([CO2])has been inevitable fact. Models predict that the atmospheric [CO2] will increase to about 700µmol mol-1 at the end of the twenty-first century. As trees constitute a majoor carbon reservoir–85% of total plant carbon is found in forest, and their ability to sequester carbon is a key determinant of future global change problems caused by increases in atmospheric CO2. In addition to the role of forests in the global carbon cycle, inceased growth could be of economic benefit, for example, offsetting deleterious effects of climatic changes. Betula albosinensis (Burk.) usually emerges as the pioneer species in initial stage and as constructive species in later stages of forest community succession of mountain forest area, and also is one of important tree species for afforestation in logged area, in southwesten China. In this experinment, Betula albosinensis seedling (one-year-old) was used as the model plant. B. albosinensis seedlings were grown under two all-day [CO2], ambient (about 350 µmol·mol-1) and elevated [CO2] (about 700 µmol·mol-1), and two planting densities of 28 plants per m2 and 84 plants per m2. The objectives were to characterize birch mature leaf photosynthesis, growth, mass accumulation and allocation responses to long-tern elevated growth [CO2] under the influences of neighbouring plants, and to assess whether elevated [CO2] regulated birch mature leaf photosynthetic capacity, in terms of leaf nitrogen concentration (leaf [N]), activity of ribulose bisphosphate carboxygenase (Rubisco), Rubisco photosynthetic efficiency, and total nonstructural carbohydrates (TNC) concentration, and also to provide a strong reference to predict the productivity of subalpine forests under the future global changes. The results are as follows: 1) B.albosinensis seedlings exposed to elevated [CO2] for 120 days, photosynthetic acclimation phenomena occurred. At two planting densities, leaves of birch seedlings grown under elevated [CO2] had lower net photosynthetic rate (A), stomatal conductance (gs), transpiration (E), apparent quantum yield (AQY) and carboxylated efficiency (CE) and higher water use efficiency (WUE), compared to those of B.albosinensis seedlings grown under ambient [CO2]. Based on the leaf area, leaf [N], Rubisco activity and photosynthetic pigments concentrations of B. albosinensis seedlings grown under elevated [CO2] were significantly lower than those grown under ambient [CO2]. The ratio of chlorophyll a to chlorophyll b concentration was not affected by elevated [CO2]. Under elevated [CO2], the TNC concentration per unit leaf area significantly increased, resulting in significant decrease in specific leaf area. Thus leaf photosynthetic capacity of B. albosinensis seedlings would perform worse under rising atmospheric [CO2] and the influences of neighbouring plants. 2) Under elevated [CO2], the relative growth rate (RGR) of B. albosinensis seedlings height, basal diameter, a leaf area and branch length significantly increased, especially at the initial stage of exposure to elevated [CO2], and a leaf area and leaf numbers per B. albosinensis seedling also significantly increased. Thus the total leaf area per B. albosinensis seedling was significantly increased under elevated [CO2]. 3) As the increase of RGR and total leaf area, biomass of B. albosinensis seedling grown elevated [CO2] was higher, compared to that of B.albosinensis seedlings grown at ambient [CO2]. Elevated [CO2] changed the biomass allocation pattern of B. albosinensis seedling. At two planting densities, B. albosinensis seedlings grown elevated [CO2] had lower leaf weight to total weight ratio (LWR), leaf area to total weight ratio (LAR) and leaf weight to non-leaf weight ratio (Wsource/Wsink), but higher root weight to shoot weight ratio (R/S), compared to those of B.albosinensis seedlings grown at ambient [CO2]. Under elevated [CO2], roots biomass to total biomass ratio was signigicantly increased, leaves biomass to total biomass ratio was significantly decreased. The main stem and branch biomass to total biomass ratio were not affected by elevated [CO2]. In conclusion, our results supported the hypothesis that the decline in photosynthetic capacity of C3 plants will appear after long-term exposure to elevated [CO2], accompanying with the significant decrease in Rubisco activity, leaf N concentration, photosynthetic pigments concentration, and significant increase in total non-structural carbohydrates concentration. Our results also have shown that the increase of biomass of B. albosinensis seedlings should be attributed to initial stimulation on RGR and total leaf area resulted from elevated [CO2]. Under elevated [CO2], the extra carbon sequestered by B.albosinensis seedlings transferred into under-ground part because of increase in root biomass and R/S.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

香豆素类物质是苯丙酸内酯(环酯)类化合物,绝大部分高等植物通过次生代谢途径都能合成。研究表明,香豆素类物质是花椒体内最重要的化感物质,系统研究香豆素类物质的作用机理有助于理解和最终解决花椒连作障碍。本文通过研究香豆素对几种植物种子特别是苜蓿种子萌发、苜蓿幼苗初级氮同化的影响,从生理生化角度揭示香豆素的作用方式,为花椒连作障碍的解决和化感作用机制的深入理解提供依据。主要研究结果如下:1. 研究了香豆素对6 种常见作物种子萌发的影响,并对一组数据采用4个不同的指标进行评价,对生物测定化感作用中存在的问题进行了讨论。结果发现1.0mM的香豆素对采用的6 种作物的种子萌发均表现出一定的化感作用,4 个指标的敏感程度依次为S (发芽速度)>AS(累积发芽速度)>CRG(发芽指数)>GT(最终发芽率)。种子萌发实验是化感作用研究中最重要、应用最广泛的生物测定方法之一,应根据不同的研究目的合理采用指标和实验方法。2. 采用培养皿试纸法进行种子萌发试验,研究了香豆素水溶液在苜蓿种子萌发过程中对其吸水、电导率及抗氧化保护酶活性的影响。结果表明,影响苜蓿种子发芽的香豆素浓度阀值为0.3mM。香豆素在1.0mM 的浓度下降低了苜蓿种子吸水阶段Ⅱ的吸水速度,使其外渗物质增多,电导率增大,并显著抑制了超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)的活性,同时种子体内丙二醛(MDA)的含量显著增大。高浓度香豆素破坏了膜的结构、影响了抗氧化保护酶的活性是香豆素降低苜蓿发芽率的原因之一,也可能是影响花椒-苜蓿间作的关键因素之一。3. 不同浓度(0、25 μM、50 μM、0.1 mM、1.0 mM)化感活性物质香豆素对10 日龄苜蓿幼苗初级氮同化的影响的结果表明25 µM~50 µM 的香豆素加快了苜蓿幼苗对硝态氮的吸收。高浓度的香豆素导致苜蓿根系和叶片内可溶性蛋白含量降低、鲜重减小、地下鲜重/地上鲜重(R/S)的比值升高,根系中初级氮同化的关键酶硝酸还原酶(NR)、谷氨酸胺合成酶(GS)、谷氨酸脱氢酶(GDH)的活性降低,叶片中NR、GS 的活性减低、叶绿素含量减少,而GDH 的活性升高。香豆素影响苜蓿幼苗氮代谢和氨同化的关键酶,导致体内养分的缺失是香豆素抑制苜蓿幼苗生长的机理之一。Coumarins are lactones of o-hydroxycinnamic acid, and are allelopathiccompounds that originate in the phenylpropanoid pathway. They are synthesized byalmost all higher plants. According to previous studies, coumarins were mostimportant allelochemicals in Chinese prickly ash. Systematically research of theeffect of coumarin could help to comprehend the continuous cropping impediment.The effects of coumarin on seed germination and primary nitrogen assimilation ofalfalfa were studied. The main results showed that:1. We compared four common germination indices (S, AS, CRG, GT)preciously calculated with the same date. The results showed that, at theconcentration of 1.0 mM, coumarin inhibited seeds germination. Among all indices,the S index was most sensitive, followed by the AS and CRG indices. Andsuggestions on the expression of bioassay results were also provided.2. At concentrations above 0.3 mM, coumarin inhibited seed germination in aconcentration-dependent manner. During seed imbibitionⅡ, coumarin at 1.0 mMsignificantly reduced the activities of superoxide dismutase (SOD), catalase (CAT),peroxidase (POD), while the content of malonyldialdehyde (MDA) in alfalfa seedssignificantly increased. The higher concentration coumarin destroyed structure ofmembrane and influenced activities of antioxidant enzymes, which might be one ofthe reasons that coumarin decreased germination rate of alfalfa, and one of the keyfactors influencing Chinese prickly ash-alfalfa intercropping.3. Alfalfa plants were exposed to different concentration of coumarin (0、25μM、50 μM、0.1 mM、1.0 mM) grown for 10 days on control medium. Coumarin, in the range of 25 μM~50 μM, significantly stimulated the net nitrate uptake.Increasing coumarin concentration led to a decrease of protein contents in theleaves and roots. The root to shoot (R/S) FW ratio was increased by increasingcoumarin concentration. Under high coumarin concentration, the activities of nitratereductase (NR) and glutamine synthetase (GS) were repressed in the roots andleaves. Glutamate dehydrogenase (GDH) was inhibited in the roots, while enhancedin the leaves. Chlorophyll contents in the leaves were also decreased under highcoumain concentration. Coumarin decreased alfalfa growth by (i) nutritionaldeficiencies shown by the decrease of nitrate, (ii) lowered N compound synthesisvia inhibition of nitrate reduction and ammonium assimilation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a measurement of pi(+)pi(-)pi(+)pi(-) photonuclear production in ultraperipheral Au-Au collisions at root s(NN) = 200 GeV from the STAR experiment. The pi(+)pi(-)pi(+)pi(-) final states are observed at low transverse momentum and are accompanied by mutual nuclear excitation of the beam particles. The strong enhancement of the production cross section at low transverse momentum is consistent with coherent photoproduction. The pi(+)pi(-)pi(+)pi(-) invariant mass spectrum of the coherent events exhibits a broad peak around 1540 +/- 40 MeV/c(2) with a width of 570 +/- 60 MeV/c(2), in agreement with the photoproduction data for the rho(0)(1700). We do not observe a corresponding peak in the pi(+)pi(-) final state and measure an upper limit for the ratio of the branching fractions of the rho(0)(1700) to pi(+)pi(-) and pi(+)pi(-)pi(+)pi(-) of 2.5% at 90% confidence level. The ratio of rho(0)(1700) and rho(0)(770) coherent production cross sections is measured to be 13.4 +/- 0.8(stat.) +/- 4.4(syst.)%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

目的】研究水肥空间组合对冬小麦形态指标及生物量的影响,对指导旱地施肥具有一定理论和实践意义。【方法】以肥熟土垫旱耕人为土为供试土壤,在全生育期遮雨和人工控制土壤水分条件下,采用分层隔水土柱试验法研究与田间土层分布相同土柱不同土层水分、氮、磷组合对冬小麦叶面积、株高、分蘖数、生物量、根冠比和收获指数等指标的影响。【结果】与整体湿润水分处理相比,上干下湿水分处理(0~30cm土层干旱胁迫,30~90cm土层湿润)下,抽穗期小麦旗叶面积、株高分别降低7.03%和3.77%;小麦地上部和根系生物量及收获指数也不同程度降低,但根冠比增加。从肥料处理看,单施磷和氮磷配施处理,小麦叶面积、株高、有效分蘖数和总生物量均极显著高于单施氮和CK,这与供试土壤各土层严重缺磷,而氮素供应相对丰富有关。从不同土层施肥看,在两种水分处理下,单施氮时,以均匀施入0~90cm土层小麦叶面积、株高、有效分蘖数、地上部生物量和根系生物量最高,施入0~30cm土层最低;单施磷和氮磷配施时,0~90cm与0~30cm土层施肥间总叶面积、旗叶面积、株高、有效分蘖数以及总生物量差异不显著,但均显著高于30~60cm和60~90cm土层相应施肥处理。【...

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The consumption of paddy rice (Oryza sativa L.) is a major inorganic arsenic exposure pathway in S.E. Asia. A multi-location survey was undertaken in Guangdong Province, South China to assess arsenic accumulation and speciation in 2 rice cultivars, one an Indica and the other a hybrid Indica. The results showed that arsenic concentrations in rice tissue increased in the order grain <husk <straw <root. Rice grain arsenic content of 2 rice cultivars was significant different and correlated with phosphorus concentration and molar ratio of P/As in shoot, being higher for the Indica cultivar than for the hybrid Indica, which suggests altering shoot phosphorus status as a promising route for breeding rice cultivars with reduced grain arsenic. Speciation of grain arsenic, performed using HPLC-ICP-MS, identified inorganic arsenic as the dominant arsenic species present in the rice grain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The formation of arsenic-phytochelatin (As-PC) complexes is thought to be part of the plant detoxification strategy for arsenic. This work examines (i) the arsenic (As) concentration-dependent formation of As-PC complex formation and (ii) redistribution and metabolism of As after arrested As uptake in Helianthus annuus. HPLC with parallel ICP-MS/ES-MS detection was used to identify and quantify the species present in plant extracts exposed to arsenate (As(V)) (between 0 and 66.7 micromol As l-1 for 24 h). At As concentrations below the EC50 value for root growth (22 micromol As l-1) As uptake is exponential, but it is reduced at concentrations above. Translocation between root and shoot seemed to be limited to the uptake phase of arsenic. No redistribution of As between root and shoot was observed after arresting As exposure. The formation of As-PC complexes was concentration-dependent. The amount and number of As-PC complexes increased exponentially with concentration up to 13.7 micromol As l-1. As(III)-PC3 and GS-As(III)-PC2 complexes were the dominant species in all samples. The ratio of PC-bound As to unbound As increased up to 1.3 micromol As l-1 and decreased at higher concentrations. Methylation of inorganic As was only a minor pathway in H. annuus with about 1% As methylated over a 32 d period. The concentration dependence of As-PC complex formation, amount of unbound reduced and oxidized PC2, and the relative uptake rate showed that As starts to influence the cellular metabolism of H. annuus negatively at As concentrations well below the EC50 value determined by more traditional means. Generally, As-PC complexes and PC-synthesis rate seem to be the more sensitive parameters to be studied when As toxicity values are to be estimated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanisms of arsenic (As) hyperaccumulation in Pteris vittata, the first identified As hyperaccumulator, are unknown. We investigated the interactions of arsenate and phosphate on the uptake and distribution of As and phosphorus (P), and As speciation in P. vittata. In an 18-d hydroponic experiment with varying concentrations of arsenate and phosphate, P. vittata accumulated As in the fronds up to 27,000 mg As kg(-1) dry weight, and the frond As to root As concentration ratio varied between 1.3 and 6.7. Increasing phosphate supply decreased As uptake markedly, with the effect being greater on root As concentration than on shoot As concentration. Increasing arsenate supply decreased the P concentration in the roots, but not in the fronds. Presence of phosphate in the uptake solution decreased arsenate influx markedly, whereas P starvation for 8 d increased the maximum net influx by 2.5-fold. The rate of arsenite uptake was 10% of that for arsenate in the absence of phosphate. Neither P starvation nor the presence of phosphate affected arsenite uptake. Within 8 h, 50% to 78% of the As taken up was distributed to the fronds, with a higher translocation efficiency for arsenite than for arsenate. In fronds, 49% to 94% of the As was extracted with a phosphate buffer (pH 5.6). Speciation analysis using high-performance liquid chromatography-inductively coupled plasma mass spectroscopy showed that >85% of the extracted As was in the form of arsenite, and the remaining mostly as arsenate. We conclude that arsenate is taken up by P. vittata via the phosphate transporters, reduced to arsenite, and sequestered in the fronds primarily as As(III).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tese dout., Ciências Agrárias, Produção Vegetal, Unidade de Ciências e Tecnologias Agrárias, Universidade do Algarve, 2000

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The field experiments were conducted to compare the alternate partial root-zone irrigation (APRI) with and without black plastic mulch (BPM) with full root-zone irrigation (FRI) in furrow-irrigated okra (Abelmoschus esculentus L. Moench) at Bhubaneswar, India. APRI means that one of the two neighbouring furrows was alternately irrigated during consecutive watering. FRI was the conventional method where every furrow was irrigated during each watering. The used irrigation levels were 25% available soil moisture depletion (ASMD), 50% ASMD, and 75% ASMD. The plant growth and yield parameters were observed to be significantly (p < 0.05) higher with frequent irrigation (at 25% ASMD) under all irrigation strategies. However, APRI + BPM produced the maximum plant growth and yield using 22% and 56% less water over APRI without BPM and FRI, respectively. The highest pod yield (10025 kg ha^-1) was produced under APRI at 25% ASMD + BPM, which was statistically at par with the pod yield under APRI at 50% ASMD + BPM. Irrigation water use efficiency (IWUE), which indicates the pod yield per unit quantity of irrigation water, was estimated to be highest (12.3 kg m^-3) under APRI at 50% ASMD + BPM, followed by APRI at 25% ASMD + BPM. Moreover, the treatment APRI at 50% ASMD + BPM was found economically superior to other treatments, generating more net return (US $ 952 ha^-1) with higher benefit–cost ratio (1.70).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two experiments were conducted to evaluate cassava root peel (CRP) as diet component for fattening pigs. In the first experiment, ten male pigs were used to investigate the nutrient digestibility and the nutritive value of CRP as replacement for maize in the diet at 0 %, 30 %, 40 %, 50 % and 60 %, while supplementing free amino acids (fAA). During two experimental periods, faeces were quantitatively collected and analysed for chemical composition. In the second experiment, 40 pigs received the same diets as in Experiment 1, and daily feed intake and weekly weight changes were recorded. Four pigs per diet were slaughtered at 70 kg body weight to evaluate carcass traits. Digestibility of dry and organic matter, crude protein, acid detergent fibre and gross energy were depressed (p<0.05) at 60 % CRP; digestible energy content (MJ kg^(−1) DM) was 15.4 at 0 % CRP and 12.7 at 60 % CRP. In the second experiment, CRP inclusion had only a small impact on feed intake, weight gain and feed conversion ratio (p>0.05) as well as on the length of the small intestine and the Longissimus dorsi muscle area. The missing correlation of daily weight gain and feed-to-gain ratio up to a CRP inclusion of 40 % indicates that negative effects of CRP on pig growth can be avoided by respecting upper feeding limits. Hence, a combined use of CRP and fAA can reduce feeding costs for small-scale pig farmers in countries where this crop-by product is available in large amounts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vegetables represent a main source of micro-nutrients which can improve the health status of malnourished poor in the world. Spinach (Spinacia oleracea L.) is a popular leafy vegetable in many countries which is rich with several important micro-nutrients. Thus, consuming Spinach helps to overcome micro-nutrient deficiencies. Pests and pathogens act as major yield constraints in food production. Root-knot nematodes, Meloidogyne species, constitute a large group of highly destructive plant pests. Spinach is found to be highly susceptible for these nematode attacks. Though agricultural production has largely benefited from modern technologies and innovations, some important dimensions which can minimize the yield losses have been neglected by most of the growers. Pre-plant or initial nematode density in soil is a crucial biotic factor which is directly responsible for crop losses. Hence, information on preplant nematode densities and the corresponding damage is of vital importance to develop successful control procedures to enhance crop production. In the present study, effect of seven initial densities of M. incognita, i.e., 156, 312, 625, 1250, 2,500, 5,000 and 10,000 infective juveniles (IJs)/plant (equivalent to 1000cm3 soil) on the growth and root infestation on potted spinach plants was determined in a screen house. In order to ensure a high accuracy, root infestation was ascertained by the number of galls formed, the percentage galled-length of feeder roots and galled-feeder roots, and egg production, per plant. Fifty days post-inoculation, shoot length and weight, and root length were suppressed at the lowest IJs density. However, the pathogenic effect was pronounced at the highest density at which 43%, 46% and 45% reduction in shoot length and weight, and root length, respectively, was recorded. The highest reduction in root weight (26%) was detected at the second highest density. The Number of galls and percentage galled-length of feeder roots/per plant showed significant progressive increase across the increasing IJs density with the highest mean value of 432.3 and 54%, respectively. The two shoot growth parameters and root length showed significant inverse relationship with the increasing gall formation. Moreover, the shoot and root length were shown to be mutually dependent on each other. Suppression of shoot growth of spinach greatly affects the grower’s economy. Hence, control measures are essentially needed to ensure a better production of spinach via reducing the pre-plant density below the level of 0.156 IJs/cm3.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Response of cotton (Gossypium hirsutum L. cv. NIAB-78) to salinity, in terms of seed germination, seedling root growth and root Na+ and K+ content was determined in a laboratory experiment. Cotton seeds were exposed to increasing salinity levels using germination water with Sodium chloride concentrations of 0, 50, 100, 150 and 200 mM, to provide different degrees of salt stress. Germinated seeds were counted and roots were harvested at 24, 48, 72 and 96 h after the start of the experiment. It appeared that seed germination was only slightly affected by an increase in salinity (in most cases the differences between treatment were non-significant), whereas root length, root growth rate, root fresh and dry weights were severely affected, generally highly significant differences in these variables were found for comparisons involving most combinations of salinity levels, in particular with increased incubation period. K+ contents decreased with increasing salinity levels, although differences in K+ content were only significant when comparing the control and the 4 salinity levels. Na+ content of the roots increased with increasing levels of NaCl in the germination water, suggesting an exchange of K+ for Na+. The ratio K+/Na+ strongly decreased with rising levels of salinity from around 4.5 for the control to similar to 1 at 200 mM NaCl.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A quantitative model of wheat root systems is developed that links the size and distribution of the root system to the capture of water and nitrogen (which are assumed to be evenly distributed with depth) during grain filling, and allows estimates of the economic consequences of this capture to be assessed. A particular feature of the model is its use of summarizing concepts, and reliance on only the minimum number of parameters (each with a clear biological meaning). The model is then used to provide an economic sensitivity analysis of possible target characteristics for manipulating root systems. These characteristics were: root distribution with depth, proportional dry matter partitioning to roots, resource capture coefficients, shoot dry weight at anthesis, specific root weight and water use efficiency. From the current estimates of parameters it is concluded that a larger investment by the crop in fine roots at depth in the soil, and less proliferation of roots in surface layers, would improve yields by accessing extra resources. The economic return on investment in roots for water capture was twice that of the same amount invested for nitrogen capture. (C) 2003 Annals of Botany Company.