955 resultados para Robustness Analysis
Resumo:
In this work we introduce a new hierarchical surface decomposition method for multiscale analysis of surface meshes. In contrast to other multiresolution methods, our approach relies on spectral properties of the surface to build a binary hierarchical decomposition. Namely, we utilize the first nontrivial eigenfunction of the Laplace-Beltrami operator to recursively decompose the surface. For this reason we coin our surface decomposition the Fiedler tree. Using the Fiedler tree ensures a number of attractive properties, including: mesh-independent decomposition, well-formed and nearly equi-areal surface patches, and noise robustness. We show how the evenly distributed patches can be exploited for generating multiresolution high quality uniform meshes. Additionally, our decomposition permits a natural means for carrying out wavelet methods, resulting in an intuitive method for producing feature-sensitive meshes at multiple scales. Published by Elsevier Ltd.
Resumo:
Cortical bones, essential for mechanical support and structure in many animals, involve a large number of canals organized in intricate fashion. By using state-of-the art image analysis and computer graphics, the 3D reconstruction of a whole bone (phalange) of a young chicken was obtained and represented in terms of a complex network where each canal was associated to an edge and every confluence of three or more canals yielded a respective node. The representation of the bone canal structure as a complex network has allowed several methods to be applied in order to characterize and analyze the canal system organization and the robustness. First, the distribution of the node degrees (i.e. the number of canals connected to each node) confirmed previous indications that bone canal networks follow a power law, and therefore present some highly connected nodes (hubs). The bone network was also found to be partitioned into communities or modules, i.e. groups of nodes which are more intensely connected to one another than with the rest of the network. We verified that each community exhibited distinct topological properties that are possibly linked with their specific function. In order to better understand the organization of the bone network, its resilience to two types of failures (random attack and cascaded failures) was also quantified comparatively to randomized and regular counterparts. The results indicate that the modular structure improves the robustness of the bone network when compared to a regular network with the same average degree and number of nodes. The effects of disease processes (e. g., osteoporosis) and mutations in genes (e.g., BMP4) that occur at the molecular level can now be investigated at the mesoscopic level by using network based approaches.
Resumo:
Several protease inhibitors have reached the world market in the last fifteen years, dramatically improving the quality of life and life expectancy of millions of HIV-infected patients. In spite of the tremendous research efforts in this area, resistant HIV-1 variants are constantly decreasing the ability of the drugs to efficiently inhibit the enzyme. As a consequence, inhibitors with novel frameworks are necessary to circumvent resistance to chemotherapy. In the present work, we have created 3D QSAR models for a series of 82 HIV-1 protease inhibitors employing the comparative molecular field analysis (CoMFA) method. Significant correlation coefficients were obtained (q(2) = 0.82 and r(2) = 0.97), indicating the internal consistency of the best model, which was then used to evaluate an external test set containing 17 compounds. The predicted values were in good agreement with the experimental results, showing the robustness of the model and its substantial predictive power for untested compounds. The final QSAR model and the information gathered from the CoMFA contour maps should be useful for the design of novel anti-HIV agents with improved potency.
Resumo:
Birnbaum-Saunders models have largely been applied in material fatigue studies and reliability analyses to relate the total time until failure with some type of cumulative damage. In many problems related to the medical field, such as chronic cardiac diseases and different types of cancer, a cumulative damage caused by several risk factors might cause some degradation that leads to a fatigue process. In these cases, BS models can be suitable for describing the propagation lifetime. However, since the cumulative damage is assumed to be normally distributed in the BS distribution, the parameter estimates from this model can be sensitive to outlying observations. In order to attenuate this influence, we present in this paper BS models, in which a Student-t distribution is assumed to explain the cumulative damage. In particular, we show that the maximum likelihood estimates of the Student-t log-BS models attribute smaller weights to outlying observations, which produce robust parameter estimates. Also, some inferential results are presented. In addition, based on local influence and deviance component and martingale-type residuals, a diagnostics analysis is derived. Finally, a motivating example from the medical field is analyzed using log-BS regression models. Since the parameter estimates appear to be very sensitive to outlying and influential observations, the Student-t log-BS regression model should attenuate such influences. The model checking methodologies developed in this paper are used to compare the fitted models.
Resumo:
Detecting both the majors genes that control the phenotypic mean and those controlling phenotypic variance has been raised in quantitative trait loci analysis. In order to mapping both kinds of genes, we applied the idea of the classic Haley-Knott regression to double generalized linear models. We performed both kinds of quantitative trait loci detection for a Red Jungle Fowl x White Leghorn F2 intercross using double generalized linear models. It is shown that double generalized linear model is a proper and efficient approach for localizing variance-controlling genes. We compared two models with or without fixed sex effect and prefer including the sex effect in order to reduce the residual variances. We found that different genes might take effect on the body weight at different time as the chicken grows.
Resumo:
Neste trabalho investigamos as propriedades em pequena amostra e a robustez das estimativas dos parâmetros de modelos DSGE. Tomamos o modelo de Smets and Wouters (2007) como base e avaliamos a performance de dois procedimentos de estimação: Método dos Momentos Simulados (MMS) e Máxima Verossimilhança (MV). Examinamos a distribuição empírica das estimativas dos parâmetros e sua implicação para as análises de impulso-resposta e decomposição de variância nos casos de especificação correta e má especificação. Nossos resultados apontam para um desempenho ruim de MMS e alguns padrões de viés nas análises de impulso-resposta e decomposição de variância com estimativas de MV nos casos de má especificação considerados.
Resumo:
Cutting analysis is a important and crucial task task to detect and prevent problems during the petroleum well drilling process. Several studies have been developed for drilling inspection, but none of them takes care about analysing the generated cutting at the vibrating shale shakers. Here we proposed a system to analyse the cutting's concentration at the vibrating shale shakers, which can indicate problems during the petroleum well drilling process, such that the collapse of the well borehole walls. Cutting's images are acquired and sent to the data analysis module, which has as the main goal to extract features and to classify frames according to one of three previously classes of cutting's volume. A collection of supervised classifiers were applied in order to allow comparisons about their accuracy and efficiency. We used the Optimum-Path Forest (OPF), Artificial Neural Network using Multi layer Perceptrons (ANN-MLP), Support Vector Machines (SVM) and a Bayesian Classifier (BC) for this task. The first one outperformed all the remaining classifiers. Recall that we are also the first to introduce the OPF classifier in this field of knowledge. Very good results show the robustness of the proposed system, which can be also integrated with other commonly system (Mud-Logging) in order to improve the last one's efficiency.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In the present work, a method for rotor support stiffness estimation via a model updating process using the sensitivity analysis is presented. This method consists in using the eigenvalues sensitivity analysis, relating to the rotor support stiffnesses variation to perform the adjustment of the model based on the minimization of the difference between eigenvalues of reference and eigenvalues obtained via mathematical model from previously adopted support bearing stiffness values. The mathematical model is developed by the finite element method and the method of adjustment should converge employing an iterative process. The performance and robustness of the method have been analyzed through a numerical example.
Resumo:
A rapid, robust and economical method for the analysis of persistent halogenated organic compounds in small volumes of human serum and umbilical cord blood is described. The pollutants studied cover a broad range of molecules of contemporary epidemiological and legislative concern, including polychlorobiphenyls (PCBs), polychlorobenzenes (CBs), hexachlorocyclohexanes (HCHs), DDTs, polychlorostyrenes (PCSs) and polybromodiphenyl ethers (PBDEs). Extraction and clean-up with n-hexane and concentrated sulphuric acid was followed with analysis by gas chromatography coupled to electron capture (GC-ECD) and GC coupled to negative ion chemical ionisation mass spectrometry (GC-NICI-MS). The advantages of this method rest in the broad range of analytes and its simplicity and robustness, while the use of concentrated sulphuric acid extraction/clean-up destroys viruses that may be present in the samples. Small volumes of reference serum between 50 and 1000 μL were extracted and the limits of detection/quantification and repeatability were determined. Recoveries of spiked compounds for the extraction of small volumes (≥300 μL) of the spiked reference serum were between 90% and 120%. The coefficients of variation of repeatability ranged from 0.1-14%, depending on the compound. Samples of 4-year-old serum and umbilical cord blood (n = 73 and 40, respectively) from a population inhabiting a village near a chloro-alkali plant were screened for the above-mentioned halogenated pollutants using this method and the results are briefly described. © 2010 Springer-Verlag.
Resumo:
Cuttings return analysis is an important tool to detect and prevent problems during the petroleum well drilling process. Several measurements and tools have been developed for drilling problems detection, including mud logging, PWD and downhole torque information. Cuttings flow meters were developed in the past to provide information regarding cuttings return at the shale shakers. Their use, however, significantly impact the operation including rig space issues, interferences in geological analysis besides, additional personel required. This article proposes a non intrusive system to analyze the cuttings concentration at the shale shakers, which can indicate problems during drilling process, such as landslide, the collapse of the well borehole walls. Cuttings images are acquired by a high definition camera installed above the shakers and sent to a computer coupled with a data analysis system which aims the quantification and closure of a cuttings material balance in the well surface system domain. No additional people at the rigsite are required to operate the system. Modern Artificial intelligence techniques are used for pattern recognition and data analysis. Techniques include the Optimum-Path Forest (OPF), Artificial Neural Network using Multilayer Perceptrons (ANN-MLP), Support Vector Machines (SVM) and a Bayesian Classifier (BC). Field test results conducted on offshore floating vessels are presented. Results show the robustness of the proposed system, which can be also integrated with other data to improve the efficiency of drilling problems detection. Copyright 2010, IADC/SPE Drilling Conference and Exhibition.
Resumo:
This paper reveals new contributions to the analysis and development of mitigating harmonic distortion devices. Considering the variety of sequential distribution of harmonic current, in the use of passive filters, one can point out the electromagnetic blocking device, which have received particular attention due to its robustness and low cost of installation. In this context, aiming the evaluation of the reliability of the results obtained through mathematical modeling, experimental tests are carried out using a low-power prototype, highlighting particular aspects related to its function as a zero-sequence harmonic blocking. © 2011 IEEE.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This paper presents the application of artificial immune systems for analysis of the structural integrity of a building. Inspired by a biological process, it uses the negative selection algorithm to perform the identification and characterization of structural failure. This paper presents the application of artificial immune systems for analysis of the structural integrity of a building. Inspired by a biological process, it uses the negative selection algorithm to perform the identification and characterization of structural failure. This methodology can assist professionals in the inspection of mechanical and civil structures, to identify and characterize flaws, in order to perform preventative maintenance to ensure the integrity of the structure and decision-making. In order to evaluate the methodology was made modeling a two-story building and several situations were simulated (base-line condition and improper conditions), yielding a database of signs, which were used as input data for the negative selection algorithm. The results obtained by the present method efficiency, robustness and accuracy.
Resumo:
This paper presents the application of artificial neural networks in the analysis of the structural integrity of a building. The main objective is to apply an artificial neural network based on adaptive resonance theory, called ARTMAP-Fuzzy neural network and apply it to the identification and characterization of structural failure. This methodology can help professionals in the inspection of structures, to identify and characterize flaws in order to conduct preventative maintenance to ensure the integrity of the structure and decision-making. In order to validate the methodology was modeled a building of two walk, and from this model were simulated various situations (base-line condition and improper conditions), resulting in a database of signs, which were used as input data for ARTMAP-Fuzzy network. The results show efficiency, robustness and accuracy.