860 resultados para Robot collaborativi layout gripper macchine automatiche
Resumo:
The International Journal of Robotics Research (IJRR) has a long history of publishing the state-of-the-art in the field of robotic vision. This is the fourth special issue devoted to the topic. Previous special issues were published in 2012 (Volume 31, No. 4), 2010 (Volume 29, Nos 2–3) and 2007 (Volume 26, No. 7, jointly with the International Journal of Computer Vision). In a closely related field was the special issue on Visual Servoing published in IJRR, 2003 (Volume 22, Nos 10–11). These issues nicely summarize the highlights and progress of the past 12 years of research devoted to the use of visual perception for robotics.
Resumo:
For wind farm optimizations with lands belonging to different owners, the traditional penalty method is highly dependent on the type of wind farm land division. The application of the traditional method can be cumbersome if the divisions are complex. To overcome this disadvantage, a new method is proposed in this paper for the first time. Unlike the penalty method which requires the addition of penalizing term when evaluating the fitness function, it is achieved through repairing the infeasible solutions before fitness evaluation. To assess the effectiveness of the proposed method on the optimization of wind farm, the optimizing results of different methods are compared for three different types of wind farm division. Different wind scenarios are also incorporated during optimization which includes (i) constant wind speed and wind direction; (ii) various wind speed and wind direction, and; (iii) the more realisticWeibull distribution. Results show that the performance of the new method varies for different land plots in the tested cases. Nevertheless, it is found that optimum or at least close to optimum results can be obtained with sequential land plot study using the new method for all cases. It is concluded that satisfactory results can be achieved using the proposed method. In addition, it has the advantage of flexibility in managing the wind farm design, which not only frees users to define the penalty parameter but without limitations on the wind farm division.
Resumo:
Particle swarm optimization (PSO), a new population based algorithm, has recently been used on multi-robot systems. Although this algorithm is applied to solve many optimization problems as well as multi-robot systems, it has some drawbacks when it is applied on multi-robot search systems to find a target in a search space containing big static obstacles. One of these defects is premature convergence. This means that one of the properties of basic PSO is that when particles are spread in a search space, as time increases they tend to converge in a small area. This shortcoming is also evident on a multi-robot search system, particularly when there are big static obstacles in the search space that prevent the robots from finding the target easily; therefore, as time increases, based on this property they converge to a small area that may not contain the target and become entrapped in that area.Another shortcoming is that basic PSO cannot guarantee the global convergence of the algorithm. In other words, initially particles explore different areas, but in some cases they are not good at exploiting promising areas, which will increase the search time.This study proposes a method based on the particle swarm optimization (PSO) technique on a multi-robot system to find a target in a search space containing big static obstacles. This method is not only able to overcome the premature convergence problem but also establishes an efficient balance between exploration and exploitation and guarantees global convergence, reducing the search time by combining with a local search method, such as A-star.To validate the effectiveness and usefulness of algorithms,a simulation environment has been developed for conducting simulation-based experiments in different scenarios and for reporting experimental results. These experimental results have demonstrated that the proposed method is able to overcome the premature convergence problem and guarantee global convergence.
Resumo:
This paper describes ongoing work on a system using spatial descriptions to construct abstract maps that can be used for goal-directed exploration in an unfamiliar office environment. Abstract maps contain membership, connectivity, and spatial layout information extracted from symbolic spatial information. In goal-directed exploration, the robot would then link this information with observed symbolic information and its grounded world representation. We demonstrate the ability of the system to extract and represent membership, connectivity, and spatial layout information from spatial descriptions of an office environment. In the planned study, the robot will navigate to the goal location using the abstract map to inform the best direction to explore in.
Resumo:
Robot Path Planning (RPP) in dynamic environments is a search problem based on the examination of collision-free paths in the presence of dynamic and static obstacles. Many techniques have been developed to solve this problem. Trapping in a local minima and maintaining a Real-Time performance are known as the two most important challenges that these techniques face to solve such problem. This study presents a comprehensive survey of the various techniques that have been proposed in this domain. As part of this survey, we include a classification of the approaches and identify their methods.
Resumo:
During the past few decades, developing efficient methods to solve dynamic facility layout problems has been focused on significantly by practitioners and researchers. More specifically meta-heuristic algorithms, especially genetic algorithm, have been proven to be increasingly helpful to generate sub-optimal solutions for large-scale dynamic facility layout problems. Nevertheless, the uncertainty of the manufacturing factors in addition to the scale of the layout problem calls for a mixed genetic algorithm–robust approach that could provide a single unlimited layout design. The present research aims to devise a customized permutation-based robust genetic algorithm in dynamic manufacturing environments that is expected to be generating a unique robust layout for all the manufacturing periods. The numerical outcomes of the proposed robust genetic algorithm indicate significant cost improvements compared to the conventional genetic algorithm methods and a selective number of other heuristic and meta-heuristic techniques.
Resumo:
This paper presents a symbolic navigation system that uses spatial language descriptions to inform goal-directed exploration in unfamiliar office environments. An abstract map is created from a collection of natural language phrases describing the spatial layout of the environment. The spatial representation in the abstract map is controlled by a constraint based interpretation of each natural language phrase. In goal-directed exploration of an unseen office environment, the robot links the information in the abstract map to observed symbolic information and its grounded world representation. This paper demonstrates the ability of the system, in both simulated and real-world trials, to efficiently find target rooms in environments that it has never been to previously. In three unexplored environments, it is shown that on average the system travels only 8.42% further than the optimal path when using only natural language phrases to complete navigation tasks.
Resumo:
The aim of this thesis is to develop a fully automatic lameness detection system that operates in a milking robot. The instrumentation, measurement software, algorithms for data analysis and a neural network model for lameness detection were developed. Automatic milking has become a common practice in dairy husbandry, and in the year 2006 about 4000 farms worldwide used over 6000 milking robots. There is a worldwide movement with the objective of fully automating every process from feeding to milking. Increase in automation is a consequence of increasing farm sizes, the demand for more efficient production and the growth of labour costs. As the level of automation increases, the time that the cattle keeper uses for monitoring animals often decreases. This has created a need for systems for automatically monitoring the health of farm animals. The popularity of milking robots also offers a new and unique possibility to monitor animals in a single confined space up to four times daily. Lameness is a crucial welfare issue in the modern dairy industry. Limb disorders cause serious welfare, health and economic problems especially in loose housing of cattle. Lameness causes losses in milk production and leads to early culling of animals. These costs could be reduced with early identification and treatment. At present, only a few methods for automatically detecting lameness have been developed, and the most common methods used for lameness detection and assessment are various visual locomotion scoring systems. The problem with locomotion scoring is that it needs experience to be conducted properly, it is labour intensive as an on-farm method and the results are subjective. A four balance system for measuring the leg load distribution of dairy cows during milking in order to detect lameness was developed and set up in the University of Helsinki Research farm Suitia. The leg weights of 73 cows were successfully recorded during almost 10,000 robotic milkings over a period of 5 months. The cows were locomotion scored weekly, and the lame cows were inspected clinically for hoof lesions. Unsuccessful measurements, caused by cows standing outside the balances, were removed from the data with a special algorithm, and the mean leg loads and the number of kicks during milking was calculated. In order to develop an expert system to automatically detect lameness cases, a model was needed. A probabilistic neural network (PNN) classifier model was chosen for the task. The data was divided in two parts and 5,074 measurements from 37 cows were used to train the model. The operation of the model was evaluated for its ability to detect lameness in the validating dataset, which had 4,868 measurements from 36 cows. The model was able to classify 96% of the measurements correctly as sound or lame cows, and 100% of the lameness cases in the validation data were identified. The number of measurements causing false alarms was 1.1%. The developed model has the potential to be used for on-farm decision support and can be used in a real-time lameness monitoring system.
Resumo:
Digital image
Resumo:
Digital image
Resumo:
Digital image
Resumo:
This paper shows that by using only symbolic language phrases, a mobile robot can purposefully navigate to specified rooms in previously unexplored environments. The robot intelligently organises a symbolic language description of the unseen environment and “imagines” a representative map, called the abstract map. The abstract map is an internal representation of the topological structure and spatial layout of symbolically defined locations. To perform goal-directed exploration, the abstract map creates a high-level semantic plan to reason about spaces beyond the robot’s known world. While completing the plan, the robot uses the metric guidance provided by a spatial layout, and grounded observations of door labels, to efficiently guide its navigation. The system is shown to complete exploration in unexplored spaces by travelling only 13.3% further than the optimal path.
Resumo:
Imagine it’s Valentine’s Day and you’re sitting in a restaurant across the table from your significant other, about to start a romantic dinner. As you gaze into each other’s eyes, you wonder how it can possibly be true that as well as not eating, your sweetheart does not – cannot – love you. Impossible, you think, as you squeeze its synthetic hand...
Resumo:
In this paper we focus on the challenging problem of place categorization and semantic mapping on a robot with-out environment-specific training. Motivated by their ongoing success in various visual recognition tasks, we build our system upon a state-of-the-art convolutional network. We overcome its closed-set limitations by complementing the network with a series of one-vs-all classifiers that can learn to recognize new semantic classes online. Prior domain knowledge is incorporated by embedding the classification system into a Bayesian filter framework that also ensures temporal coherence. We evaluate the classification accuracy of the system on a robot that maps a variety of places on our campus in real-time. We show how semantic information can boost robotic object detection performance and how the semantic map can be used to modulate the robot’s behaviour during navigation tasks. The system is made available to the community as a ROS module.
Resumo:
Extraction of text areas from the document images with complex content and layout is one of the challenging tasks. Few texture based techniques have already been proposed for extraction of such text blocks. Most of such techniques are greedy for computation time and hence are far from being realizable for real time implementation. In this work, we propose a modification to two of the existing texture based techniques to reduce the computation. This is accomplished with Harris corner detectors. The efficiency of these two textures based algorithms, one based on Gabor filters and other on log-polar wavelet signature, are compared. A combination of Gabor feature based texture classification performed on a smaller set of Harris corner detected points is observed to deliver the accuracy and efficiency.