818 resultados para Rigid boundaries
Resumo:
The paper describes an experimental and analytical study of the normal and scratch hardnesses of a model soft rigid-plastic solid. The material known as ‘Plasticine’, a mixture of dry particles and a mineral oil, has been deformed with a range of rigid conical indentors with included angles of between 30° and 170°. The sliding velocity dependence of the computed scratch hardness and friction has been examined in the velocity range 0.19 mm/s to 7.3 m/s. Data are also described for the time dependence of the normal hardness and also the estimated rate dependence of the intrinsic flow stress. The latter values were estimated from data obtained during the upsetting of right cylinders. Three major conclusions are drawn from these data and the associated analysis. (1) A first-order account of the scratching force may be provided by adopting a model which sums the computed plastic deformation and interfacial sliding contributions to the total sliding work. This is tantamount to the adoption of the two-term non-interacting model of friction. (2) For this system during sliding, at high sliding velocities at least, the interface shear stress which defines the boundary condition is not directly related to the bulk shear stress. The interface rheological characteristics indicate an appreciable dependence on the imposed strain or strain rate. In particular, the relative contributions of the slip and stick boundary conditions appear to be a function of the imposed sliding velocity. (3) The computed normal and scratch hardness values are not simply interrelated primarily because of the evolving boundary conditions which appear to exist in the scratching experiments.
Resumo:
The easily constructed bile acid-based semi-rigid molecular tweezer 2 binds guest 8 in chloroform with an association constant of 83 dm(3) mol(-1).
Resumo:
The planar rocking of a prismatic rectangular rigid block about either of its corners is considered. The problem of homoclinic intersections of the stable and unstable manifolds of the perturbed separatrix is addressed to and the corresponding Melnikov functions are derived. Inclusion of the vertical forcing in the Hamiltonian permits the construction of a three-dimensional separatrix. The corresponding modified Melnikov function of Wiggins for homoclinic intersections is derived. Further, the 1-period symmetric orbits are predicted analytically using the method of averaging and compared with the simulation results. The stability boundary for such orbits is also established.
Resumo:
Analytical and numerical solutions have been obtained for some moving boundary problems associated with Joule heating and distributed absorption of oxygen in tissues. Several questions have been examined which are concerned with the solutions of classical formulation of sharp melting front model and the classical enthalpy formulation in which solid, liquid and mushy regions are present. Thermal properties and heat sources in the solid and liquid regions have been taken as unequal. The short-time analytical solutions presented here provide useful information. An effective numerical scheme has been proposed which is accurate and simple.
Resumo:
Limiting ionic conductance (Lambda(0)) of rigid symmetrical unipositive ions in aqueous solution shows a strong temperature dependence. For example, Lambda(0) more than doubles when the temperature is increased from 283 to 318 K. A marked variation also occurs when the solvent is changed from ordinary water (H2O) to heavy water (D2O). In addition, Lambda(0) shows a nonmonotonic size dependence with a skewed maximum near Cs+. Although these important results have been known for a long time, no satisfactory theoretical explanation exists for these results. In this article we present a simple molecular theory which provides a nearly quantitative explanation in terms of microscopic structure and dynamics of the solvent. A notable feature of this theory is that it does not invoke any nonquantifiable models involving solvent-berg or clatherates. We find the strong temperature dependence of Lambda(0) to arise from a rather large number of microscopic factors, each providing a small but nontrivial contribution, but all acting surprisingly in the same direction. This work, we believe, provides, for the first time, a satisfactory explanation of both the anomalous size and temperature dependencies of Lambda(0) of unipositive ions in molecular terms. The marked change in Lambda(0) as the solvent is changed from H2O to D2O is found to arise partly from a change in the dielectric relaxation and partly from a change in the effective interaction of the ion with the solvent.
Resumo:
The tendency of granular materials in rapid shear flow to form non-uniform structures is well documented in the literature. Through a linear stability analysis of the solution of continuum equations for rapid shear flow of a uniform granular material, performed by Savage (1992) and others subsequently, it has been shown that an infinite plane shearing motion may be unstable in the Lyapunov sense, provided the mean volume fraction of particles is above a critical value. This instability leads to the formation of alternating layers of high and low particle concentrations oriented parallel to the plane of shear. Computer simulations, on the other hand, reveal that non-uniform structures are possible even when the mean volume fraction of particles is small. In the present study, we have examined the structure of fully developed layered solutions, by making use of numerical continuation techniques and bifurcation theory. It is shown that the continuum equations do predict the existence of layered solutions of high amplitude even when the uniform state is linearly stable. An analysis of the effect of bounding walls on the bifurcation structure reveals that the nature of the wall boundary conditions plays a pivotal role in selecting that branch of non-uniform solutions which emerges as the primary branch. This demonstrates unequivocally that the results on the stability of bounded shear how of granular materials presented previously by Wang et al. (1996) are, in general, based on erroneous base states.
Resumo:
In this paper, we present a novel differential geometric characterization of two- and three-degree-of-freedom rigid body kinematics, using a metric defined on dual vectors. The instantaneous angular and linear velocities of a rigid body are expressed as a dual velocity vector, and dual inner product is defined on this dual vector, resulting in a positive semi-definite and symmetric dual matrix. We show that the maximum and minimum magnitude of the dual velocity vector, for a unit speed motion, can be obtained as eigenvalues of this dual matrix. Furthermore, we show that the tip of the dual velocity vector lies on a dual ellipse for a two-degree-of-freedom motion and on a dual ellipsoid for a three-degree-of-freedom motion. In this manner, the velocity distribution of a rigid body can be studied algebraically in terms of the eigenvalues of a dual matrix or geometrically with the dual ellipse and ellipsoid. The second-order properties of the two- and three-degree-of-freedom motions of a rigid body are also obtained from the derivatives of the elements of the dual matrix. This results in a definition of the geodesic motion of a rigid body. The theoretical results are illustrated with the help of a spatial 2R and a parallel three-degree-of-freedom manipulator.
Resumo:
We derive boundary conditions at a rigid wall for a granular material comprising rough, inelastic particles. Our analysis is confined to the rapid flow, or granular gas, regime in which grains interact by impulsive collisions. We use the Chapman-Enskog expansion in the kinetic theory of dense gases, extended for inelastic and rough particles, to determine the relevant fluxes to the wall. As in previous studies, we assume that the particles are spheres, and that the wall is corrugated by hemispheres rigidly attached to it. Collisions between the particles and the wall hemispheres are characterized by coefficients of restitution and roughness. We derive boundary conditions for the two limiting cases of nearly smooth and nearly perfectly rough spheres, as a hydrodynamic description of granular gases comprising rough spheres is appropriate only in these limits. The results are illustrated by applying the equations of motion and boundary conditions to the problem of plane Couette flow.
Resumo:
The Bénard–Marangoni convection is studied in a three-dimensional container with thermally insulated lateral walls and prescribed heat flux at lower boundary. The upper surface of the incompressible, viscous fluid is assumed to be flat with temperature dependent surface tension. A Galerkin–Tau method with odd and even trial functions satisfying all the essential boundary conditions except the natural boundary conditions at the free surface has been used to solve the problem. The critical Marangoni and Rayleigh numbers are determined for the onset of steady convection as a function of aspect ratios x0 and y0 for the cases of Bénard–Marangoni, pure Marangoni and pure Bénard convections. It is observed that critical parameters are decreasing with an increase in aspect ratios. The flow structures corresponding to the values of the critical parameters are presented in all the cases. It is observed that the critical parameters are higher for case with heat flux prescribed than those corresponding to the case with prescribed temperature. The critical Marangoni number for pure Marangoni convection is higher than critical Rayleigh number corresponding to pure Bénard convection for a given aspect ratio whereas the reverse was observed for two-dimensional infinite layer.
Resumo:
Visible-light microscopy (VLM) and atomic-force microscopy (AFM) were used to study the progression of grain-boundary grooving and migration in high-purity alumina (Lucalox™). Groove profiles from the same grain boundaries were revisited using AFM following successive heat-treatments. The grooves measured from migrating grain boundaries were found to have asymmetric partial-angles compared to those measured from boundaries that did not migrate during the experiment. For a moving boundary, the grain with the larger partial-angle was consistently found to grow into the grain with the smaller partial-angle. Migrating boundaries were observed to leave behind remnant thermal grooves. The observations indicate that the boundary may be bowing out during the migration process.
Resumo:
The tendency of granular materials in rapid shear ow to form non-uniform structures is well documented in the literature. Through a linear stability analysis of the solution of continuum equations for rapid shear flow of a uniform granular material, performed by Savage (1992) and others subsequently, it has been shown that an infinite plane shearing motion may be unstable in the Lyapunov sense, provided the mean volume fraction of particles is above a critical value. This instability leads to the formation of alternating layers of high and low particle concentrations oriented parallel to the plane of shear. Computer simulations, on the other hand, reveal that non-uniform structures are possible even when the mean volume fraction of particles is small. In the present study, we have examined the structure of fully developed layered solutions, by making use of numerical continuation techniques and bifurcation theory. It is shown that the continuum equations do predict the existence of layered solutions of high amplitude even when the uniform state is linearly stable. An analysis of the effect of bounding walls on the bifurcation structure reveals that the nature of the wall boundary conditions plays a pivotal role in selecting that branch of non-uniform solutions which emerges as the primary branch. This demonstrates unequivocally that the results on the stability of bounded shear flow of granular materials presented previously by Wang et al. (1996) are, in general, based on erroneous base states.
Resumo:
One of the assumptions of the van der Waals and Platteeuw theory for gas hydrates is that the host water lattice is rigid and not distorted by the presence of guest molecules. In this work, we study the effect of this approximation on the triple-point lines of the gas hydrates. We calculate the triple-point lines of methane and ethane hydrates via Monte Carlo molecular simulations and compare the simulation results with the predictions of van der Waals and Platteeuw theory. Our study shows that even if the exact intermolecular potential between the guest molecules and water is known, the dissociation temperatures predicted by the theory are significantly higher. This has serious implications to the modeling of gas hydrate thermodynamics, and in spite of the several impressive efforts made toward obtaining an accurate description of intermolecular interactions in gas hydrates, the theory will suffer from the problem of robustness if the issue of movement of water molecules is not adequately addressed.
Resumo:
The thermodynamic properties of liquid unsaturated Co--O solutions have been determined by electrochemical measurements using (Y sub 2 O sub 3 )ThO sub 2 as solid electrolyte. The cell can be represented as, Pt. MoO sub 2 + Mo | (Y sub 2 O sub 3 )ThO sub 2 | O sub Co , tungsten, Pt, Emf of the cell was measured as a function of oxygen concentration in liquid Co at 1798, 1873 and 1973K. Least-mean squares regression analysis of the experimental data gives for the free energy of solution of diatomic oxygen in liquid Co Delta G exp 0 sub O(Co) = --84935--7.61 T ( plus/minus 400) J/g-atom and self interaction parameter for oxygen epsilon exp O sub O = --97240/T + 40.52 ( plus/minus 1) where the standard state for O is an infinitely dilute solution in which the activity is equal to atomic percent. The present data are discussed in comparison with those reported in the literature and the phase diagram for the Co--O system. 18 ref.--AA.
Resumo:
In most taxa, species boundaries are inferred based on differences in morphology or DNA sequences revealed by taxonomic or phylogenetic analyses. In crickets, acoustic mating signals or calling songs have species-specific structures and provide a third data set to infer species boundaries. We examined the concordance in species boundaries obtained using acoustic, morphological, and molecular data sets in the field cricket genus Itaropsis. This genus is currently described by only one valid species, Itaropsis tenella, with a broad distribution in western peninsular India and Sri Lanka. Calling songs of males sampled from four sites in peninsular India exhibited significant differences in a number of call features, suggesting the existence of multiple species. Cluster analysis of the acoustic data, molecular phylogenetic analyses, and phylogenetic analyses combining all data sets suggested the existence of three clades. Whatever the differences in calling signals, no full congruence was obtained between all the data sets, even though the resultant lineages were largely concordant with the acoustic clusters. The genus Itaropsis could thus be represented by three morphologically cryptic incipient species in peninsular India; their distributions are congruent with usual patterns of endemism in the Western Ghats, India. Song evolution is analysed through the divergence in syllable period, syllable and call duration, and dominant frequency.