914 resultados para Retrial in PH-Distribution Production,


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anthropogenically released CO2 is dissolving in the ocean, causing a decrease in bulk-seawater pH (ocean acidification). Projections indicate that the pH will drop 0.3 units from its present value by 2100 (ref. 1). However, it is unclear how the growth of plankton is likely to respond. Using simulations we demonstrate how pH and carbonate chemistry at the exterior surface of marine organisms deviates increasingly from those of the bulk sea water as organism metabolic activity and size increases. These deviations will increase in the future as the buffering capacity of sea water decreases with decreased pH and as metabolic activity increases with raised seawater temperatures. We show that many marine plankton will experience pH conditions completely outside their recent historical range. However, ocean acidification is likely to have differing impacts on plankton physiology as taxon-specific differences in organism size, metabolic activity and growth rates during blooms result in very different microenvironments around the organism. This is an important consideration for future studies in ocean acidification as the carbonate chemistry experienced by most planktonic organisms will probably be considerably different from that measured in bulk-seawater samples. An understanding of these deviations will assist interpretation of the impacts of ocean acidification on plankton of different size and metabolic activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The degree to which advection modulates the distribution of plankton populations at a 1-D coastal observatory was assessed at station L4 in the western English Channel (50°15′N 4°13′W, depth 50 m), part of the Western Channel Observatory (WCO). Five tidal-cycle surveys were conducted, three in spring and two in summer 2010. Observations of the physical characteristics of L4 were obtained by using a moored acoustic doppler current profiler (ADCP) and a free-falling microstructure sensor (MSS). The moored ADCP highlighted the presence of vertical shear, with typical values of U during spring tides of ∼0.5 m s−1 at the surface and ∼0.2 m s−1 at the bed. The distribution of phyto- and zooplankton populations above a size threshold of 200 μm were examined using an in-line holographic imaging system, the Holocam. Variability in time as well as depth is a common feature throughout each of the surveys, with examples of recorded numbers of phytoplankton that ranged between 1300 L−1 and 2300 L−1 at the same depth but at different points within the tidal cycle. Further, at the same points in the tidal cycle the number of recorded zooplankton was also seen to vary, specifically with the identification of gelatinous planula in spring that increased the observed number to maximums of between 140 L−1 and 220 L−1 in the upper layer, considerably higher that the corresponding WP-2 net counts for a similar period. Specific aspects of the movement and transfer of plankton relating to advection and interaction with the pycnocline are identified, both across tidal cycles and seasons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physiological studies on M. parvicella have been conducted to determine the rate of growth of this organism in pure culture. The organism displayed a doubling time of 128 days despite its profuse abundance in a local Wastewater Treatment Plant (WWTW). An extensive survey has been ongoing since February 2000 into the extent of M. parvicella in the WWTW. A suite of monoclonal and polyclonal antibodies has been developed to detect and quantify M. parvicella.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies of invasion scenarios over long time periods are important to refine explanations and predictions of invasion success and impact. We used data from surveys in 1958 and 1999 of the macroinvertebrates of Lough Neagh, Northern Ireland, to assess changes in the distribution of native and introduced amphipods in relation to the wider assemblage. In 1958, the invader G. tigrinus dominated the shoreline fauna, with the native G. d. celticus present in very low numbers, whereas in 1999 the reverse was evident. In both surveys, G. tigrinus was the only amphipod present in the mid-Lough. G. tigrinus thus seems to have become established within L. Neagh, perhaps overshot and then senesced, with the native species re-establishing on the shoreline, with the invader mostly restricted to the deep mid-Lough. The non-amphipod macroinvertebrate assemblage was similar between the two surveys, in terms of Bray-Curtis community similarity, assemblage diversity, dominance and the taxa based ASPT water quality index. However, the mean density of macroinvertebrates (all taxa combined) was lower in 1999 compared to 1958, largely accounted for by a decline in oligochaete numbers. Since Gammarus species may be predators of other macroinvertebrates and influence their distribution and abundance, we investigated this trophic link in staged laboratory encounters. Both G. tigrinus and G. d. celticus preyed on isopods, alderflies, mayflies, chironomids and mysids, however, the native G. d. celticus had a significantly greater predatory impact on isopods and chironomids than did the invader G. tigrinus. While we cannot definitively ascribe cause and effect in the present scenario, we discuss how replacement of one amphipod species by another may have impacts on the wider macroinvertebrate assemblage.