942 resultados para Restorative circles
Resumo:
Objective: the aim of this in vivo study was to evaluate the response of the pulp-dentin complex following application of resin-modified glass-ionomer cement, calcium hydroxide hard-setting cement and EDTA-soluble preparation of dentine matrix proteins (ESDP) in deep cavities prepared in non-human primate teeth. Methods: Eighteen deep Class V buccal cavities were prepared in premolars of four capuccin monkeys. In Groups 1 and 2, the cavity floor was lined with ESDP or a resin-modified glass-ionomer cement (Vitrebond - 3M ESPE), respectively. In Group 3 (control), the cavity was lined with a hard setting calcium hydroxide cement (Dycal - Dentsply). The cavities were subsequently filled with amalgam. After 6 months, the animals were sacrificed and the teeth were prepared for microscopic assessment. Six-micron thick serial sections were stained with H/E, Masson's trichrome and Brown & Brenn techniques. Results: No inflammatory pulpal response was observed for all experimental and control Groups. However, the amount of reactionary dentin deposition differed between groups in the rank order ESDP (Group 1) > calcium hydroxide (Group 3) > resin-modified glass-ionomer (Group 2). These differences were statistically significant. Conclusions: All materials were biocompatible when applied in deep cavities. ESDP stimulated higher deposition of reactionary dentin matrix than Vitrebond and Dycal.
Resumo:
Purpose : To compare the radiopacity of 13 restorative materials, (a conventional glass-ionomer cement, three resin-modified glass-ionomer cements, six polyacid-modified resin-based composites, and three resin-based composites) to sound tooth structure. Materials and Methods: 315 specimens were made of the restorative materials (n= 21), of 2 min height and 4.1 mm diameter. Radiographs were taken of the specimens, together with the tooth structure sample and an aluminum step wedge. The radiopacity values of each specimen were taken using a transmission densitometer. Results: ANOVA and Tukey's test (95% level of confidence) revealed that, except for a resin-based composite, a polyacid-modified resin-based composite, a resin-modified glass-ionomer cement and the conventional glass-ionomer cement, all the evaluated restorative materials were more radiopaque than the tooth structure.
Resumo:
This in vitro study evaluated the cytotoxic effects of a restorative resin composite applied to an immortalized odontoblast-cell line (MDPC-23). Seventy-two round resin discs (2-mm thick and 4 mm in diameter) were light-cured for 20 or 40 seconds and rinsed, or not, with PBS and culture medium. The resin discs were divided into four experimental groups: Group 1: Z-100/20 seconds; Group 2: Z-100/20 seconds/rinsed; Group 3: Z100/40 seconds; Group 4: Z-100/40 seconds/rinsed. Circular filter paper was used as a control material (Group 5). The round resin discs and filter papers were placed in the bottom of wells of four 24-well dishes (18 wells for each experimental and control group). MDPC-23 cells (30,000 cells/cm(2)) were plated in the wells and allowed to incubate for 72 hours. The zone of inhibition around the resin discs was measured under inverted light microscopy; the MTT assay was carried out for mitochondrial respiration and cell morphology was measured under SEM. The scores obtained from inhibition zone and MTT assay were analyzed with the Kruskal-Wallis followed by Dunnett tests. In Groups 1, 2, 3 and 4, the thickness of the inhibition zone was 1,593 +/- 12.82 mum, 403 +/- 15.49 mum, 1,516 +/- 9.81 mum and 313 +/- 13.56 mum, respectively. There was statistically significant difference among the experimental and control groups at the 0.05 level of significance. The MTT assay demonstrated that the resin discs of the experimental groups 1, 2, 3 and 4 reduced the cell metabolism by 83%, 40.1%, 75.5% and 24.5%. Only between the Groups 2 and 4 was there no statistically significant difference for mitochondrial respiration. Close to the resin discs, the MDPC-23 cells exhibited rounded shapes, with only a few cellular processes keeping the cells attached to the substrate or, even disruption of plasma membrane. Adjacent to the inhibition zone, the cultured cells exhibited multiple fine cellular processes on the cytoplasmic membrane organized in epithelioid nodules, similar to the morphology observed to the control group. Based on the results, the authors may conclude that the Z-100 resin composite light cured for 20 seconds was more cytopathic to MDPC-23 cells than Z-100 light cured for 40 seconds. The cytotoxic effects of the resin discs decreased after rinsing them with PBS and culture medium. This was confirmed by MTT assay and upon evaluation of the inhibition zone, which was narrower following rinsing of the resin discs.
Resumo:
The aim of this study was to evaluate the shear bond strength of brackets bonded with different restorative systems and compare it with that afforded by an established orthodontic bonding system. Seventy human bicuspids were used, divided into five different groups with 14 teeth each. Whereas a specific orthodontic bonding resin (Transbond (TM) XT) was used in the control group, the restorative systems Charisma, Tetric Ceram, TPH Spectrum and Z100 were used in the other four groups. Seven days after bonding the brackets to the samples, shear forces were applied under pressure in a universal testing machine. The data collected was evaluated using the ANOVA test and, when a difference was identified, the Tukey test was applied. A 5% level of significance was adopted. The mean results of the shear bond strength tests were as follows: Group 1 (Charisma), 14.98 MPa; Group 2 (Tetric Ceram), 15.16 MPa; Group 3 (TPH), 17.70 MPa; Group 4 (Z100), 13.91 MPa; and Group 5 or control group (Transbond (TM) XT), 17.15 MPa. No statistically significant difference was found among the groups. It was concluded that all tested resins have sufficient bond strength to be recommended for bonding orthodontic brackets.