953 resultados para Resin-dentin bonds
Resumo:
This study evaluated the effect of different thickness of disk-shaped specimens on the push-out bond strength test. Eighteen lower bovine teeth were sectioned (20mm) and prepared (15mm) with the same post system drill (Light Post (R) #1, Schaumburg, IL, Bisco, USA). The apical third of each specimen was embedded in a plastic matrix filled with an acrylic resin (Dencrilay (TM), Dencril, São Paulo, Brazil). The posts were cleaned with alcohol, silanated (ProSil (R), FGM, Joenville, SC, Brazil) and cemented with the RelyX (TM) U100 (3M ESPE, St. Paul, MN, USA). Each specimen was sectioned into three pieces of differing thicknesses (1, 2, and 4 mm). These disk-samples were allocated into 3 groups (n=18) and subjected to push-out testing. One-way ANOVA showed no influence of the specimen thickness on the results (p=0.842). No correlation was observed between thickness and push-out bond strength (Pearson Correlation, r(2)=0.0688; P=0.6209). The push-out bond strength test was not affected by the thickness of the disk-specimens.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective: the purpose of the present study was to investigate the effects of ND:YLF laser irradiation (1.31 J/cm(2); 250 mJ per pulse), acid etching, and hypermineralization on the shear bond strength (SBS) of the Scotchbond Multi-Purpose Plus (3M Dental Products) bonding system. Summary Background Data: Previous studies had shown that the pretreatment of the dentin substrate with laser irradiation can influence the SBS, Methods: Sixty bovine incisors were selected and stored at -18 degrees C, Dentinal buccal surface was exposed and radiographs were taken to control dentin thickness, the specimens were separated into 2 groups: (1) the control, which was kept in distilled water at 4 degrees C; (2) the hypermineralized, which was kept in hypermineralizing solution at 4 degrees C for 14 days, Each group was divided into 3 subgroups according to the type of dentin pretreatment used: M (acid etching + primer + bond); AL (acid etching + primer + bond + laser); and LA (laser + acid etching + primer + bond). A standard composite resin cylinder (Z100-3M) was bonded to the dentinal surface and the SBS performed on an Instron machine (500 Kg load cell at 0.5 mm/min), followed by scanning electron microscopy (SEM) and x-ray diffraction analysis. Results: Analysis of variance (ANOVA) determined that the pretreatments influenced the SBS values (p < 0.05): AL (9.96 MPa), M (7.28 MPa), and LA (4.87 MPa), the interaction between the group and pretreatment factors also influenced the SBS (p < 0.05). The highest values were obtained for the interaction control/AL (11.64 MPa), Conclusion: the results suggested that dentin treatment with laser after the application of the adhesive system is efficient in achieving higher bond strength and is promising as a possible new adhesive substrate.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose: To evaluate the bond strength of indirect restorations to dentin using self-adhesive cements with and without the application of adhesive systems.Material and Methods: Seventy-two bovine incisors were used, in which the buccal surfaces were ground down to expose an area of dentin measuring a minimum of 4 x 4 mm. The indirect resin composite Resilab was used to make 72 blocks, which were cemented onto the dentin surface of the teeth and divided into 4 groups (n = 18): group 1: self-adhesive resin cement BiFix SE, applied according to manufacturer's recommendations; group 2: self-adhesive resin cement RelyX Unicem, used according to manufacturer's recommendations; group 3: etch-and-rinse Solobond M adhesive system + BiFix SE; group 4: etch-and-rinse Single Bond 2 adhesive system + RelyX Unicem. The specimens were sectioned into sticks and subjected to microtensile testing in a universal testing machine (EMIC DL-200MF). Data were subjected to one-way ANOVA and Tukey's test (alpha = 5%).Results: The mean values (+/- standard deviation) obtained for the groups were: group 1: 15.28 (+/- 8.17)(a), group 2: 14.60 (+/- 5.21)(a), group 3: 39.20 (+/- 9.98)(c), group 4: 27.59 (+/- 6.57)(b). Different letters indicate significant differences (ANOVA; p = 0.0000).Conclusion: The application of adhesive systems before self-adhesive cements significantly increased the bond strength to dentin. In group 2, RelyX Unicem associated with the adhesive system Single Bond 2 showed significantly lower mean tensile bond strengths than group 3 (BiFix SE associated with the etch-and-rinse Solobond M adhesive system).
Resumo:
The mineral and organic phases of mineralized dentin contribute co-operatively to its strength and toughness. This study tested the null hypothesis that there is no difference in nano-dynamic mechanical behavior (complex modulus-E*; loss modulus-E ''; storage modulus-E'; in GPa) of dentin hybrid layers (baseline: E*, 3.86 +/- 0.24; E '', 0.23 +/- 0.05; E', 3.85 +/- 0.24) created by an etch-and-rinse adhesive in the presence or absence of biomimetic remineralization after in vitro aging. Using scanning probe microscopy and nano-dynamic mechanical analysis, we demonstrated that biomimetic remineralization restored the nano-dynamic mechanical behavior of heavily remineralized, resin-sparse regions of dentin hybrid layers (E*, 19.73 +/- 3.85; E '', 8.75 +/- 3.97; E', 16.02 +/- 2.58) to those of the mineralized dentin base (E*, 19.20 +/- 2.42; E '', 6.57 +/- 1.96; E', 17.39 +/- 2.0) [p > 0.05]. Conversely, those resin-sparse, water-rich regions degraded in the absence of biomimetic remineralization, with significant decline [p < 0.05] in their complex and storage moduli (E*, 0.83 +/- 0.35; E '', 0.88 +/- 0.24; E', 0.62 +/- 0.32). Intrafibrillar apatite deposition preserves the integrity of resin-sparse regions of hybrid layers by restoring their nanomechanical properties to those exhibited by mineralized dentin.
Resumo:
Purpose: To evaluate the bond strength between human dentin and composites, using two light-activated single-bottle total-etch adhesive systems with different pHs combined with chemically activated and light-activated-composites. The tested hypothesis was that the dentin bond strength is not influenced by an adhesive system of low pH, combined with chemically activated or light-activated composites. Material and Method: Flat dentin surfaces of twenty-eight human third molars were allocated in 4 groups (n=7), depending on the adhesive system: (One Step Plus-OS and Prime & Bond NT-PB) and composite (light-activated Filtek Z-100 [Z100] and chemically activated Bisfil 2B [B2B]). Each adhesive system was applied on acid-etched dentin and then one of the composites was added to form a 5 mm-high resin block. The specimens were stored in tap water (37 degrees C/24 h) and sectioned into two axes, x and y. This was done with a diamond disk under coolant irrigation to obtain beams with a cross-section area of approximately 0.8 mm(2). Each specimen was then attached to a custom-made device and submitted to the microtensile test (1 mm.min(-1)). Data were analyzed using two-way ANOVA and Tukey's tests (p<0.05). Results: the anticipated hypothesis was not confirmed (p<0.0001). The bond strengths (MPa) were not statistically different between the two adhesive systems when light-activated composite was used (OS+Z100 = 24.7 +/- 7.1(a); PB+Z100 = 23.8 +/- 5.7(a)). However, with use of the chemically activated composite (B2B), PB (7.8 +/- 3.6(b) MPa) showed significantly lower dentin bond strengths than OS (32.2 +/- 7.6(a)). Conclusion: the low pH of the adhesive system can affect the bond of chemically activated composite to dentin. on the other hand, under the present conditions, the low pH did not seem to affect the bond of light-activated composites to dentin significantly.
Resumo:
An analysis was carried out to observe whether the application or not of a composite surface sealant (CSS), as well the moment for CSS application were able to reduce marginal microleakage in compactable composite resin restoration. All the preparations were restored with a compactable composite resin. The restored teeth were randomly assessed. G1 (control group): finished and polished; G2: finished, polished, etched and cover with CSS; G3: immediately after the restoration done the CSS was applied, then finished and polished; G4: CSS applied immediately after the restoration was done, the finished and polished, etched, and covered with CSS. The specimens were isolated with nail polish, thermocycled, immersed in aqueous solution of silver nitrate, and followed in a photo developing solution. The microleakage scores obtained from the occlusal and cervical walls were analyzed with the Kruskall-Wallis nonparametric test. No microleakage was found at the enamel margins. Comparing the microleakage scores at dentin/cementum margins (p < 0.05) it was found that G3 (p = 0.0162) and G4 (p = 0.0187) were able to reduce microleakage when compared with group G2. However the results were not statistically different from the control group. The application of CSS was not able to completely eliminate marginal microleakage at the dentin/cementum margins.
Resumo:
Objective: the aim of this in vivo study was to evaluate the response of the pulp-dentin complex following application of resin-modified glass-ionomer cement, calcium hydroxide hard-setting cement and EDTA-soluble preparation of dentine matrix proteins (ESDP) in deep cavities prepared in non-human primate teeth. Methods: Eighteen deep Class V buccal cavities were prepared in premolars of four capuccin monkeys. In Groups 1 and 2, the cavity floor was lined with ESDP or a resin-modified glass-ionomer cement (Vitrebond - 3M ESPE), respectively. In Group 3 (control), the cavity was lined with a hard setting calcium hydroxide cement (Dycal - Dentsply). The cavities were subsequently filled with amalgam. After 6 months, the animals were sacrificed and the teeth were prepared for microscopic assessment. Six-micron thick serial sections were stained with H/E, Masson's trichrome and Brown & Brenn techniques. Results: No inflammatory pulpal response was observed for all experimental and control Groups. However, the amount of reactionary dentin deposition differed between groups in the rank order ESDP (Group 1) > calcium hydroxide (Group 3) > resin-modified glass-ionomer (Group 2). These differences were statistically significant. Conclusions: All materials were biocompatible when applied in deep cavities. ESDP stimulated higher deposition of reactionary dentin matrix than Vitrebond and Dycal.
Resumo:
This study evaluated the effect of mechanical cycling on the bond strength of fiber posts bonded to root dentin. The hypotheses examined were that bond strength is not changed after fatigue testing and bond strength does not present vast variations according to the type of fiber post. Sixty crownless, single-rooted human teeth were endodontically treated, with the space prepared at 12 mm. Thirty specimens received a quartz fiber post (Q-FRC (DT Light-Post), and the remaining 30 specimens received a glass fiber post (G-FRC) (FRC Postec Plus). All the posts were resin luted (All Bond+Duolink), and each specimen was embedded in a cylinder with epoxy resin. The specimens were divided into six groups: G1-Q-FRC+no cycling, G2- Q-FRC+20,000 cycles (load: 50N, angle of 45 degrees; frequency: 8Hz); G3- Q-FRC+2,000,000 cycles; G4- G-FRC+no cycling; G5- G-FRC+20,000 cycles; G6- GFRC+2,000,000 cycles. The specimens were cut perpendicular to their long axis, forming 2-mm thick disc-samples, which were submitted to the push-out test. ANOVA (alpha=.05) revealed that: (a) QFRC (7.1 +/- 2.2MPa) and G-FRC (6.9 +/- 2.1MPa) were statistically similar (p=0.665); (b) the no cycling groups (7.0 +/- 2.4MPa), 20,000 cycles groups (7.0 +/- 2.1MPa) and 2,000,000 cycles groups (7.0 +/- 2.0MPa) were statistically similar (p=0.996). It concluded that mechanical cycling did not affect the bond strength of two fiber posts bonded to dentin.
Resumo:
The bond strength of composite resins (CRs) to dentin is influenced by the interfacial microstructure of the hybrid layer (HL) and the resin tags (TAG). The contemporary self-etching primer adhesive systems overcame the inconvenient of the etch-and-rinse protocol. Studies, however, have demonstrated that HL thickness and TAG length vary according to the wetting time and additional use of acid-etching prior to self-etching primers. This study investigated the localized stress distribution in the HL and the dentin/adhesive interface. Two HL thicknesses (3 or 6 mu m), two TAG lengths (13 or 17 mu m) and two loading conditions (perpendicular and oblique-25 degrees) were investigated by the finite element (FE) analysis. Five two-dimensional FE models (M) of a dentin specimen restored with CR (38 x 64 mu m) were constructed: M1 - no HL and no TAG; M2 - 3 mu m of HL and 13 mu m of TAG; M3 - 3 mu m of HL and 17 mu m of TAG; M4 - 6 mu m of HL and 13 mu m of TAG; and M5 - 6 mu m of HL and 17 mu m of TAG. Two distributed loadings (L) (20N) were applied on CR surface: L1 - perpendicular, and L2 - oblique (25 degrees). Fixed interfacial conditions were assigned on the border of the dentin specimen. Ansys 10.0 (Ansys (R), Houston, PA, USA) software was used to calculate the stress fields. The peak of von Mises (sigma(vM)) and maximum principal stress (sigma(max)) was higher in L2 than in L1. Microstructures (HL and TAG) had no effect on local stresses for L1. Decreasing HL decreased sigma(vM) and sigma(max) in all structures for L2, but the TAG length had influence only on the peributular dentin. The thickness of HL had more influence on the sigma(vM) and sigma(max) than TAG length. The peritubular dentin and its adjacent structures showed the highest sigma(vM) and sigma(max), mainly in the oblique loading.
Resumo:
The purpose of this study was to evaluate the influence of intrapulpal pressure and dentin depth on bond strengths of an etch-and-rinse and a self-etching bonding agent to dentin in vitro and in vivo. Twenty-four pairs of premolars were randomly divided into four groups (n = 6) according to the dentin bonding agent, Single Bond and Clearfil SE Bond, and intrapulpal pressure, null or positive. Each tooth of the pair was further designated to be treated in vivo or in vitro. The intrapulpal pressure was controlled in vivo by the delivery of local anesthetics containing or not a vasoconstrictor, while in vitro, it was achieved by keeping the teeth under hydrostatic pressure. Class I cavities were prepared and the dentin bonding agents were applied followed by incremental resin restoration. For the teeth treated in vitro, the same restorative procedures were performed after a 6 month-storage period. Beams with I mm 2 cross-sectional area were prepared and, microtensile tested. Clearfil SE Bond was not influenced by any of the variables of the study, while bond strengths produced in vitro were significatly higher for Single Bond. Overall, lower bond strengths were produced in deep dentin, which reached statistical significance when Single Bond was applied under physiological or simulated intrapulpal pressure. In conclusion, in vitro bonding may overestimate the immediate adhesive performance of more technique-sensitive dentin bonding systems. The impact of intrapulpal pressure on bond strength seems to be more adhesive dependent than dentin morphological characteristics related to depth. (C) 2007 Wiley Periodicals, Inc.
Resumo:
Many in vivo studies have stated that the response of the dentin/pulp complex does not depend on the dental material used as the liner or pulp-capping agent. However, several in vitro studies have reported the metabolic cytotoxic effects of resin components applied to fibroblast and odontoblast cell lines. The aim of this study was to evaluate the human pulp response following direct pulp capping with current bonding agents and calcium hydroxide (CH). Sound premolars scheduled for orthodontic extraction had their pulp tissue mechanically exposed. After hemorrhage control and total acid conditioning, the experimental bonding agents, including All Bond 2, Scotchbond MP-Plus, Clearfil Liner Bond 2, and Prime & Bond 2.1 were applied on the pulp exposure site. CH saline paste was used as the control pulp-capping agent. All cavities were restored with Z-100 resin composite according to the manufacturer's instructions. Following extractions, the teeth were processed for microscopic evaluation. In the short term, the bonding agents elicited a moderate inflammatory pulp response with associated dilated and congested blood vessels adjacent to the pulp exposure site. A mild inflammatory pulp response was observed when Clearfil Liner Bond 2 or CH was applied on the pulp exposures. With time, macrophages and giant cells engulfing globules and components of all experimental bonding agents displaced into the pulp space were seen. This chronic inflammatory response did not allow complete pulp repair, which interfered with the dentin bridge formation. Pulp exposures capped with CH exhibited an initial organization of elongated pulp cells underneath the coagulation necrosis. CH stimulated early pulp repair and dentin bridging that extended into the longest period. The bonding agents evaluated in the present study cannot be recommended for pulp therapy on sound human teeth.
Resumo:
OBJECTIVE: The aim of this study was to evaluate the resistance to fracture of intact and restored human maxillary premolars. METHOD AND MATERIALS: Thirty noncarious human maxillary premolars, divided into three groups of 10, were submitted to mechanical tests to evaluate their resistance to fracture. Group 1 consisted of intact teeth. Teeth in group 2 received mesio-occlusodistal cavity preparations and were restored with direct resin composite restorations. Teeth in group 3 received mesio-occlusodistal cavity preparations and were restored with ceromer inlays placed with the indirect technique. After restoration, teeth were stored at 37 degrees C for 24 hours and then thermocycled for 500 cycles at temperatures of 5 degrees C and 55 degrees C. RESULTS: Statistical analysis revealed that group 3 (178.765 kgf) had a significantly greater maximum rupture load than did group 1 (120.040 kgf). There was no statistically significant difference between groups 1 and 2 or between groups 2 and 3. CONCLUSION: Class II cavity preparations restored with indirect ceromer inlays offered greater resistance to fracture than did intact teeth. The fracture resistance of teeth restored with resin composite was not significantly different from that of either the ceromer or intact teeth.
Resumo:
Objective. The aim of this in vitro study was to evaluate the interaction between two sources of fluoride (restorative systems and dentifrices) in inhibiting artificial root caries development. Methods. One hundred and eighty tooth segments were embedded in polyester resin, and sanded flat. Cylindrical cavities 1.0 mm-deep and 1.5 mm-diameter were prepared in root dentin and randomly restored by fluoride-containing restorative systems: Ketac-fil/Espe (Ke), Fuji II LC/GC Corp (Fj), F2000/3M (F2), Surefil/Dentsply (Su) or a control: Filtek Z250/3M (Z2). Ten experimental groups were made to test the association among the five restorative systems and two dentifrices: with F - (Sensodyne Baking Soda) or without F- (Sensodyne Original) (n = 18). After surface polishing, a 1 mm-wide margin around the restorations was demarcated and initial dentin surface Knoop microhardness values (KHNi) were obtained. The specimens were submitted to a pH-cycling model, and to applications of slurries of dentifrice. Afterwards the final dentin surface Knoop microhardness values (KHNf) were measured. Results. The differences between KHNi and KHNf, and the covariate KHNi were considered by the ANCOVA and Tukey's test (α = 0.05). The interaction between restorative system and dentifrice was statistically significant (p = 0.0026). All restorative systems provided some protection against artificial caries challenge when associated with the fluoride-containing dentifrice treatment. The means (standard deviation) of reductions in Knoop hardness values for systems associated with the fluoride-containing dentifrice were: Ke: 40.0(1.02)a, Fj: 41.9(1.02)b, F2: 43.3(1.04)c, Su: 43.5(1.00)c, Z2: 44.0(1.02)c; and with the non-fluoride-containing dentifrice were: Ke: 42.9(1.02)a, Fj: 44.7(1.01)b, F2: 45.2(1.09)bc, Su: 46.0(0.99)c, Z2: 46.6(0.99)c (statistical differences were expressed by different letters). Conclusion. The cariostatic effect shown by the fluoride-containing dentifrice could enhance that shown by Ketac-fil and Fuji II LC, and could mask that shown by F2000. © 2002 Elsevier Science Ltd. All rights reserved.