928 resultados para Research data management (RDM)
Resumo:
The manipulation and handling of an ever increasing volume of data by current data-intensive applications require novel techniques for e?cient data management. Despite recent advances in every aspect of data management (storage, access, querying, analysis, mining), future applications are expected to scale to even higher degrees, not only in terms of volumes of data handled but also in terms of users and resources, often making use of multiple, pre-existing autonomous, distributed or heterogeneous resources.
Resumo:
The electrical power distribution and commercialization scenario is evolving worldwide, and electricity companies, faced with the challenge of new information requirements, are demanding IT solutions to deal with the smart monitoring of power networks. Two main challenges arise from data management and smart monitoring of power networks: real-time data acquisition and big data processing over short time periods. We present a solution in the form of a system architecture that conveys real time issues and has the capacity for big data management.
Resumo:
In this paper we approximate to the understanding of the hybrid city as a context of changes, produced in the perception and in the modes of inhabiting and coexisting in cities through new technologies of information and communication.
Resumo:
Context: Empirical Software Engineering (ESE) replication researchers need to store and manipulate experimental data for several purposes, in particular analysis and reporting. Current research needs call for sharing and preservation of experimental data as well. In a previous work, we analyzed Replication Data Management (RDM) needs. A novel concept, called Experimental Ecosystem, was proposed to solve current deficiencies in RDM approaches. The empirical ecosystem provides replication researchers with a common framework that integrates transparently local heterogeneous data sources. A typical situation where the Empirical Ecosystem is applicable, is when several members of a research group, or several research groups collaborating together, need to share and access each other experimental results. However, to be able to apply the Empirical Ecosystem concept and deliver all promised benefits, it is necessary to analyze the software architectures and tools that can properly support it.
Resumo:
© The Author(s) 2014. Acknowledgements We thank the Information Services Division, Scotland, who provided the SMR01 data, and NHS Grampian, who provided the biochemistry data. We also thank the University of Aberdeen’s Data Management Team. Funding This work was supported by the Chief Scientists Office for Scotland (grant no. CZH/4/656).
Resumo:
Il lavoro svolto si concentra sullo studio e lo sviluppo dei sistemi software per la gestione dei big data. Inizialmente sono stati analizzati i settori nei quali i big data si stanno diffondendo maggiormente per poi studiare l'ingegnerizzazione e lo sviluppo dei sistemi in grado di gestire questo tipo di dati. Sono state studiate tutte le fasi del processo di realizzazione del software e i rischi e i problemi che si possono incontrare. Infine è stato presentato un software di analisi di big data: Google BigQuery.
Resumo:
Includes bibliographical references.
Resumo:
"B-241021"--P. l.
Resumo:
Thesis (M.S.)--University of Illinois at Urbana-Champaign.
Resumo:
Includes bibliographical references.
Resumo:
At head of title, BS 3-140: United States Department of Agriculture, Bureau of Biological Survey.
Resumo:
Includes bibliographies.
Resumo:
"May 2001."
Resumo:
"November 1966."